中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7925
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42709069      Online Users : 1474
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7925


    Title: 二維穩態不可壓縮磁流體問題的迭代最小平方有限元素法之數值計算;Numerical Computation of the 2-D Stationary Incompressible MHD Problem by Iterative Least-Squares Finite Element Schemes
    Authors: 陳美君;Mei-chun Chen
    Contributors: 數學研究所
    Keywords: 最小平方;那維爾-史托克方程;馬克士威方程;有限元素法;磁流體方程;least squares;finite element methods;Maxwell's equations;magneto-hydrodynamic equations;Navier-Stokes equations
    Date: 2008-01-03
    Issue Date: 2009-09-22 11:09:15 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在本篇論文中,我們主要研究穩態不可壓縮磁流體(MHD)問題的兩種皮卡型迭代最小平方有限元素法數值解。首先引入兩個新未知變數旋度和電流密度,我們可推得在速度-旋度-壓力-磁場-電流密度(VVPMC)形式下的非線性一階不可壓縮MHD問題。接著我們引用兩種皮卡型迭代最小平方有限元素法以求取此一階不可壓縮VVPMC MHD問題之數值解。在每一次皮卡型迭代中,使用加權或未加權的L2最小平方有限元素法求解其相對應的一階歐辛型的問題。針對各種不同流體雷諾數的一階歐辛型問題和非線性一階VVPMC MHD問題,數值實驗結果證明了此類最小平方有限元素法的精確度。最後,我們列出MHD流體通過某個階梯形流場的數值結果。 In this thesis, we study two Picard-type iterative least-squares finite element schemes for approximating the solution to the stationary incompressible magneto -hydrodynamic (MHD) problem. Introducing the additional vorticity and current density variables, we have the non-linear first-order incompressible MHD problem in the velocity-vorticity-pressure-magnetic field-current density (VVPMC) formulation. Two Picard-type iterative least-squares finite element schemes are then applied for finding the numerical solution of the first-order incompressible VVPMC MHD problem. In each Picard iteration, the L2 least-squares finite element scheme with or without weights is employed to approximate the solution of the associated first-order Oseen-type problem. Numerical experiments with various hydrodynamic Reynolds numbers for the first-order Oseen-type problem and the non-linear first-order VVPMC MHD problem are reported to demonstrate the accuracy of the least-squares finite element approach. Finally, numerical results of an MHD flow over a step are also given.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明