中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7934
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42707120      Online Users : 1228
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7934


    Title: 某類網格型微分方程行波解的存在性,唯一性及穩定性;Existence, Uniqueness and Asymptotic Stability of Traveling Wave Solutions for Some Lattice Differential Equations
    Authors: 陳冠朋;Kuan-peng Chen
    Contributors: 數學研究所
    Keywords: 存在性;唯一性;漸近穩定性;行波解;monostable;下解;上解;asymptotic stability;uniqueness;existence;monostable;supersolution;subsolution;traveling wave solutions
    Date: 2008-06-14
    Issue Date: 2009-09-22 11:09:30 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在這篇論文,我們考慮以下的網格型微分方程$$u'_n(t)=-g(u_n(t))+lambda f(u_n(t))+sumlimits_{Ngeq|i|geq0}d_iu_{n-i}(t)$$在$(0,infty )$而且$ninBbb Z$,$f$,$gin C^1$,$g$是非遞減函數以及$f$是非線性monostable型。根據[7]和[9]的方法,存在critical speed $c_0$,且使得所有$c>c_0>0$,我們證明存在唯一的行波解。此外,我們也研究介於$0$和$1$之間行波解的漸近穩定性。 In this thesis, we consider the following lattice differential equation $$u'_n(t)=-g(u_n(t))+lambda f(u_n(t))+sumlimits_{Ngeq|i|geq0}d_iu_{n-i}(t)$$ on $(0,infty )$ with $ ninBbb Z$, where $f,gin C^1$,$g$ is non-decreasing and $f$ is a monostable-type nonlinearity. Following the ideas of [7] and [9], we also show the existence of a critical speed $c_0>0$ such that for all $c>c_0>0$, there exists a unique traveling wave solution of the equations. Furthermore, we also study the asymptotic stability of traveling wave solutions which are bounded between $0$ and $1$.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明