中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/79649
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42693501      在线人数 : 1493
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/79649


    题名: 機器學習方法在蝴蝶辨識中之比較;The Comparison of Machine Learning Methods in Butterfly Identification
    作者: 李毅信;LI, YI-SIN
    贡献者: 數學系
    关键词: 影像辨識;K 最近鄰居分類法;多層感知神經網路;支持向量機;卷積神經網路
    日期: 2019-01-26
    上传时间: 2019-04-02 15:10:14 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究旨在探討「K 最近鄰居分類法(KNN) 」、「多層感知神經網路(MLP)」、 「支持向量機(SVM)」與卷積神經網路經典模型: 「LENET」與「ALEXNET」在圖像辨識上的訓練結果之差異。

    本實驗的蝴蝶圖像取自ImageNet,共8500張圖片,並自製成數據樣本集,將訓練集分別帶入上述模型後,觀察個別訓練時間及訓練準確率之差異,並在迭代結果上進行比較。而後再進一步探討影響訓練結果的原因。最後將測試集放入訓練好的模型進行預測,觀察測試集準確率,分析探討影響預測結果的因素。
    ;The goal of this thesis is to explore the training results of “K Nearest Neighbor”, “multilayer perceptual neural network” , “Support Vector Machine” and the classic model of Convolutional neural network: “LENET” and “ALEXNET” in image recognition.

    The butterfly images in this experiment are from ImageNet which is the largest database of image recognition. First, we bring the training data into our models, and observe the difference between training time and training accuracy for each model, then compare the iterative results. Next,we give the reasons that affect the training results. Finally, we put the test set into the trained model for prediction.We observe the accuracy of the test set, and analyzed the factors affecting the prediction.
    显示于类别:[數學研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML212检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明