English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42696563      線上人數 : 1423
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/7970


    題名: An Inexact Newton Method for Drift-Diffusion Model in Semiconductor Device Simulations
    作者: 湯惟策;Wei-tse Tan
    貢獻者: 數學研究所
    關鍵詞: semiconductor;GMRES;finite difference;drift-diffusion;Newton's method;drift-diffusion;Newton's method;finite difference;GMRES;semiconductor
    日期: 2009-07-09
    上傳時間: 2009-09-22 11:10:30 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 本篇論文針對半導體儀器作數值模擬,運用 inexact Newton's method 對 drift-diffusion model 求解。考慮原型的 drift-diffusion model 包含:電子電壓,電子濃度,電洞濃度等三個未知變數。數值實驗使用 drift-diffusion model 模擬一個一維的二極體幾何模型。我們討論兩個不同的 non-dimensionalization approach 對 Newton's method 的影響並分析 GMRES method 使用不同的 preconditioner 在 Newton's method 的結果。實驗結果顯示使用不同的 non-dimensionalization approach 將影響 Newton's method 的收斂情形。在實驗中我們使用 US non-dimensional approach (Uniform Scaling non-dimensional approach) 有效的提供 Newton's method 一個良好的環境。根據實驗結果發現增加 block Jacobi preconditioner 中 block 的數量幾乎不影響 Newton's method 的迭代次數,更甚者即便是增加網格點的數目 Newton's method 的迭代次數依然不受影響。 The aim of this thesis to employ an inexact Newton's method to solve discrete drift-diffusion model in semiconductor device simulations, where the drift-diffusion model in the primitive form consists of the electrostatic potential , the electron concentrations and the hole concentrations. Consider a 1D diode simulations modeled by drift-diffusion as a test case. We discuss the effect on Newton's method by two non-dimensionalization approaches and the application of GMRES method without/ with diagonal and block Jacobi. It is true that the non-dimensional approach will affect the converge of Newton's method. In our case, we choose US non-dimensional approach (Uniform Scaling non-dimensional approach) and it will make a great environment for Newton's method. From numerical experiment, we find that increasing number of blocks for a block Jacobi preconditioner almost doesn't affect the number of Newton's iterations and decreasing grid size for a block Jacobi preconditioner also doesn't affect the Newton's iterations neither.
    顯示於類別:[數學研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明