中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/80222
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43327206      Online Users : 1070
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/80222


    Title: 利用貝氏網路分析肺癌患者使用標靶藥物與其他藥物之交互作用;Analysis of the interaction between target drugs and other drugs in lung cancer patients using Bayesian network
    Authors: 蔡億霖;TSAI, Yi-Lin
    Contributors: 工業管理研究所
    Keywords: 肺癌;貝氏網路;健保資料庫;Lung Cancer;Bayesian Network;National Health Insurance Research Database
    Date: 2019-07-15
    Issue Date: 2019-09-03 12:23:04 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 自2009年來,標靶藥物用於治療晚期非小細胞肺癌的比率逐年提高,標靶藥物的出現雖為患者帶來希望,但長期的治療效果與潛在的風險,仍有待觀察。隨著其他疾病的發生,藥物種類的使用量也隨之增加,有些研究認為某些特定的疾病藥物會影響患者使用標靶藥物的效果,然而至今醫學上還有許多藥物尚未被證實會影響標靶藥物的療效,然而針對藥物之間的相互影響,醫學上大多以臨床或生物實驗為主,然而健保資料庫的出現為醫療上的數據分析帶來新的發展,期望能從大量的數據中獲取對醫療上有幫助的信息,而醫療上常見的分析手法有存活分析、多變量分析和貝式網路模型。
    我們使用台灣健保資料庫去進行數據分析,健保資料庫具備數據量大且整合了病患長期的就醫資料等優勢,我們以標靶藥物為第一線藥物的肺癌患者為主要分析對象,整理患者在治療肺癌期間與其他藥物的使用情況,並透過建構貝式網路來尋找影響患者惡化的潛在原因,並探討病人在不同情況下使用不同種藥物所導致惡化的原因。
    ;Since 2009, the ratio of target drugs for the treatment of advanced non-small cell lung cancer has increased year by year. Although the targeted drugs have brought hope to patients, the effect of long therapeutic procedure and potential risks remain to be observed. With the occurrence of other diseases, the use of drug types has also increased. Some studies believe that certain specific disease drugs will affect the effect of patients using target drugs. However, there are still many drugs in medicine that have not been confirmed to affect the efficacy of target drugs. And for the interaction of drugs, most of the medicines are mainly clinical or biological experiments. However, the rise of the health insurance database has brought new developments in medical data analysis. It is expected to obtain medically helpful
    information from a large amount of data. The common analytical methods in medical practice include survival analysis, multivariate analysis, and bayesian network
    models.
    We use the National Health Insurance Research Database for data analysis. The health insurance database has the advantages of numerous data and integration of long-term medical information of patients. We focus on the patients with lung cancer who use target drugs as first-line drugs. And summary the use of other drugs during the treatment of lung cancer. Through the construction of Bayesian network to find potential causes of deterioration. Discuss the reasons for the deterioration of patients using different drugs in different situations.
    Appears in Collections:[Graduate Institute of Industrial Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML182View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明