摘要: | 隨著關於能源的議題越來越受到重視,近年來太陽能電池的研究熱度也跟著水漲船高,其中,有機化合物分子更是占有舉足輕重的地位。 并三噻吩(dithieno[3,2-b:2’,3’-d]thiophene, DTT)作為高度平面性的有機小分子,在有機太陽能電池(organic photovoltaic, OPV)、有機場效電晶體(organic field-effect transistor, OFET)、有機發光二極體(organic light-emitting diode, OLED)及染料敏化太陽能電池 (dye-sensitized solar cell, DSSC)等領域之應用不勝枚舉,同時亦具有相當不錯的光電性質表現,長久以來一直受到科學家們的青睞。 然而,隨著新型態太陽能電池的推陳出新,鈣鈦礦太陽能電池(Perovskite Solar Cell, PSC)儼然成為新的趨勢,而截至目前為止,將并三噻吩應用於此領域之研究尚且不多,因此在本次研究中,我們開發出以并三噻吩為中心結構之分子,並將其應用於鈣鈦礦太陽能電池中。 而在另一方面,并三噻吩合成成本極高,這對於太陽能電池之應用極為不利,因此本研究提出一種新的合成方式,以降低其成本。 ;As importance of the energy issue, recently the research of the solar cell became more and more attracted, and the organic molecule which can be applied in it played an impotant role. Dithieno[3,2-b:2’,3’-d]thiophene (DTT) as a high planar molecule was widely used in many kinds of solar cells such as organic photovoltaic (OPV), organic field-effect transistor (OFET), organic light-emitting diode (OLED) and dye-sensitized solar cell (DSSC), which has attracted our attention for a long time. However, among the development of the new type solar cell, Perovskite Solar Cells (PSC) became a new trend. In addition, there was only few application of DTT in perovskite solar cells. So in this research we designed a new DTT-core structure as a hole-transporting material (HTM) and applied in PSC device. On the other hand, the traditional synthetic route of DTT was complex, difficult to purify, and needed both high-cost and toxic reagents, so we developed a new method which is step-economical, environmental-friendly and low-cost. |