中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/80477
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42708977      在线人数 : 1471
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/80477


    题名: 開發具深度學習應用於自動追蹤耳膜功能之數位耳鏡於中耳炎輔助系統;Implementation of a Digital Otoscope with Deep Learning for an Automatic Tracking Function in Otitis Media Assisted System
    作者: 宋怡萱;Sung, Yi-Syuan
    贡献者: 生醫科學與工程學系
    关键词: 中耳炎;耳膜;耳鏡;Otitis media(OM);Eardrum;Otoscope
    日期: 2019-07-16
    上传时间: 2019-09-03 14:36:42 (UTC+8)
    出版者: 國立中央大學
    摘要: 中耳炎是一種在兒童裡普遍存在的疾病,通常是感冒引起的併發症。根據流行病學研究統計,高達80%的兒童在5歲之前患有中耳炎,其中有46%得過三次以上的急性中耳炎,所以在中耳炎的診斷上就非常具有挑戰性。然而,父母容易把中耳炎症狀與普通感冒相互混淆,沒有及時做好處理,而耽誤治療的黃金時間。如果這時家中具有耳鏡輔助診斷系統的設備就可以及時觀察出耳膜是否有異狀,及時去做治療。
    本研究提出了一種半自動耳膜追蹤演算法系統,結合經認證過的數位耳鏡應用於居家照護的環境中,並考量到非專業用戶使用者並沒有相關的醫學背景和缺乏解剖學相關知識,藉由使用者引導介面這套系統可以引導使用者拍攝出完整耳膜。我們描繪出耳膜輪廓示意圖讓使用者依據畫面上的示意圖得知耳膜的形狀,增加箭頭引導標誌讓使用者根據箭頭指向的方向去做移動,最後再根據耳膜面積占總畫面的面積大小,達到一定比例時,就可以捕獲出完整的耳膜。我們的結果表明,半自動耳膜追蹤演算法可以抓出耳膜影像具有90.43%準確度。其中,正常耳膜影像抓出耳膜影像的準確度為95.66%,而非正常影像包括急性中耳炎(AOM) 抓到耳膜影像的準確度也有84.92%,而慢性中耳炎(COM)和積液性中耳炎(OME) 抓到耳膜影像的準確度也都分別有87.88%和84.11%。在後端影像辨識分析上,我們也增加深度學習的概念使用FCN-AlexNet和FCN-Vgg16兩種語義分割模組,去優化耳膜影像切割技術,讓電腦自動學習得到最佳的耳膜影像,以便於特徵提取對耳膜進行自動分類。
    將智慧耳鏡結合手機APP設計一個耳膜拍攝引導介面,目的是為了讓使用者能夠有效率地去操作耳鏡以達成拍攝高品質耳膜影像,可以幫助使用者在家中利用隨身的裝置即可操作本商品去做及時檢測和連續監測耳朵內部是否有異狀產生。增加機器學習的概念有效地讓電腦自動去學習,診斷出耳膜疾病,幫助醫生給予適當的治療並減少復發性,避免造成兒童聽力受損和語言發展遲緩等問題。
    ;Otitis media is defined as infection in the middle ear. Acute otitis media (AOM) is one of the most common infections in children under 15 years of age. According to epidemiological studies, children with otitis media have an infection rate of more than 60% before one year old. More than 80 percent of children have at least one episode of otitis media by the time they are 5 years of age and 46% of them have had more than three times of acute otitis media. Therefore, the diagnosis of otitis media in children is very challenging. However, many parents confuse otitis media with a common cold and only half of the patients with otitis media would have a fever. If children are not able to describe the symptoms related to otitis media, parents often ignore the symptoms and even for the physician other than otorhinolaryngologist can misjudge the symptoms, as a consequence, losing the golden time for treatment. At this time, the equipment with the otoscope-assisted diagnosis system in the home can timely observe whether the eardrum is abnormal or not.
    Therefore, we proposed a semi-automatic eardrum tracking function implemented to the device, which can guide the user to capture the complete eardrum based on the eardrum illustration diagram. We sketched the outline of the eardrum on the screen so that the user can know the shape of the eardrum. We also add a guide sign to allow the user to move the direction to find eardrum. Finally, it is decided to capture the eardrum according to the ratio of the area of the eardrum to the area of the total picture. Our results demonstrated that this semi-automatic eardrum tracking algorithm can capture the complete eardrum with 90.43% accuracy for total images. Among them, the accuracy of 95.66 % for normal images, the accuracy of 84.92 % for AOM images, the accuracy of 87.88 % for COM images and the accuracy of 84.11 % for OME images. In the back-end image recognition analysis, we also add the concept of deep learning using FCN-AlexNet and FCN-Vgg16 modules to optimize the eardrum image segmentation technology. The computer automatically can learn to get the best and complete eardrum image in order to feature extraction on the eardrum perform automatic classification.
    The smart otoscope will be combined with the mobile APP to design an eardrum shooting guide interface, in order to the user efficiently operate the otoscope to achieve high quality eardrum photographs. The smart otoscope can help parents to continuously detect and monitor the internal structure of the ear in time. Through the concept of machine learning, you can diagnose the symptoms of the eardrum and give appropriate treatment to reduce recurrence of the disease. This can avoid hearing loss and slow language development in children.
    显示于类别:[生物醫學工程研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML265检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明