English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43480078      線上人數 : 1162
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/80987


    題名: 基於遞迴神經網路於多重裝置下之硬舉動作辨識及應用;Deadlift Recognition and Application based on Multiple Modalities using Recurrent Neural Network
    作者: 牟庭辰;Mou, Ting-Chen
    貢獻者: 通訊工程學系
    關鍵詞: 動作辨識;慣性測量;深度學習;多重裝置結合;深度攝影機;Kinect;behavior recognition;multiple modalities;deep learning;LSTM;smart gym
    日期: 2019-07-29
    上傳時間: 2019-09-03 15:23:34 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來隨者人工智慧的興起以及電腦硬體效能之提升,人體的動作辨識也漸漸受大家所歡迎,尤其在電腦視覺與圖形識別領域上更是發展迅速。相關應用像是遊戲、追蹤監控、智慧環境場所、醫療領域……等。
    本篇論文是針對重訓類動作進行辨識,以硬舉運動項目為例,一方面是因為這類型的動作屬於多關節運動,在重訓動作中屬於高效率的運動,然而對於初學者而言常會因為觀念不正確導致姿勢錯誤而受傷,而我們所出的系統可以分辨出不同類型的硬舉動作之外,在後續的應用方面可以有效的
    給予使用者相關的專業建議,找到問題所在,進而避免及預防受傷的風險。
    另一方面可以分擔健身教練的工作,讓教練可以專注於更專業的教學內容上。我們提出利用多台裝置的架構之下進行整套系統的運行,包括Kinect攝影機及x-OSC慣性測量裝置,利用時變性投影法及特徵串接等方法,將特徵資料送入深度學習中的多層長短期記憶架構去做訓練辨識訓練。使用多重裝置可以彌補單一裝置的不足,對於後續的應用也能有更多不同層面的處理方式。這套系統應用在我們自己所拍攝的Vap多重裝置之重訓動作資料庫上,且後續的應用也能有效的分析動做。
    ;With the rise of artificial intelligence and the improvement of computer hardware performance in recent years, the human action recognition (HAR) has gradually been popular, especially in Computer Vision and Pattern Recognition. The application has been widely developed in various field. For example, games, tracking and surveillance systems, smart environment, medical field etc.
    This thesis is aimed at fitness behavior recognition, taking deadlift as an example. This exercise is a multi-joint movement, however beginners usually cause injury due to their incorrect concept and wrong posture. One of the purpose is for giving users some professional advice about fitness. The other is the system for the gym can share the work of the fitness instructor, so coaches can focus on the more professional teaching content to their students.
    We propose a multi-modality deadlift recognition and application system, including Kinect camera and inertial sensors (x-OSC). Using Time-Variant Skeleton Vector Projection method and feature concatenated method before we feed features to our network. Then, we use the Long short-term memory (LSTM) network, a type of recurrent neural network, as classifier. The dataset we used is VAP multi-modalities fitness behavior dataset. This dataset is we proposed, and contain 6 fitness behavior. Using multi-modality data can achieve a good recognition accuracy effectively and the applications of our system can also analyze uses results effectively.
    顯示於類別:[通訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML235檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明