English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42683724      線上人數 : 1560
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/81143


    題名: 應用於校內法規之分類化文字探勘與檢索技術;Classified Term Frequency-Inverse Document Frequency technique applied to school regulationsClassified Term Frequency-Inverse Document Frequency technique applied to school regulations
    作者: 范芳瑄;Fan, Fang-Syuan
    貢獻者: 資訊工程學系在職專班
    關鍵詞: 文字探勘;文字探勘與檢索;相似度分析;階層式分群;text mining;TF-IDF;Cosine Similarity;Hierarchical Clustering
    日期: 2019-07-23
    上傳時間: 2019-09-03 15:36:54 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究將文字探勘與檢索技術與相性做結合並應用於『國立中央大學校內法規及延伸之校外法規』,並建立於雲端平台上來做法規分類化處理。
    文字探勘與檢索技術只能呈現一種衡量量化方法,無法呈現多元化的選擇,因此透過相性並搭配餘弦相似性、階層式分群法等技術,使得一篇法規可在不同的相性產生不同的結果,透過分類可產生多元化的選擇來協助使用者找尋到適合的相關法規。

    關鍵字:文字探勘、文字探勘與檢索、相似度分析、階層式分群
    本研究將文字探勘與檢索技術與相性做結合並應用於『國立中央大學校內法規及延伸之校外法規』,並建立於雲端平台上來做法規分類化處理。
    文字探勘與檢索技術只能呈現一種衡量量化方法,無法呈現多元化的選擇,因此透過相性並搭配餘弦相似性、階層式分群法等技術,使得一篇法規可在不同的相性產生不同的結果,透過分類可產生多元化的選擇來協助使用者找尋到適合的相關法規。;This study combines Term Frequency-Inverse Document Frequency technique with compatibility and applies it to the “Regulations of National Central University and Extensions of Off-campus Regulations” and establishes them on the cloud platform for tax classification.
    Term Frequency-Inverse Document Frequency technique can only present one type of measurement and quantitative method and is not capable of presenting diverse selection. Therefore, through the combination of compatibility, Cosine Similarity, Hierarchical Clustering and other techniques, a regulation can produce different results in different compatibility. A wide range of selection can be produced through classification, helping users to find the proper regulations which is related.

    keyword:text mining、TF-IDF、Cosine Similarity、Hierarchical Clustering
    This study combines Term Frequency-Inverse Document Frequency technique with compatibility and applies it to the “Regulations of National Central University and Extensions of Off-campus Regulations” and establishes them on the cloud platform for tax classification.
    Term Frequency-Inverse Document Frequency technique can only present one type of measurement and quantitative method and is not capable of presenting diverse selection. Therefore, through the combination of compatibility, Cosine Similarity, Hierarchical Clustering and other techniques, a regulation can produce different results in different compatibility. A wide range of selection can be produced through classification, helping users to find the proper regulations which is related.

    keyword:text mining、TF-IDF、Cosine Similarity、Hierarchical Clustering
    This study combines Term Frequency-Inverse Document Frequency technique with compatibility and applies it to the “Regulations of National Central University and Extensions of Off-campus Regulations” and establishes them on the cloud platform for tax classification.
    Term Frequency-Inverse Document Frequency technique can only present one type of measurement and quantitative method and is not capable of presenting diverse selection. Therefore, through the combination of compatibility, Cosine Similarity, Hierarchical Clustering and other techniques, a regulation can produce different results in different compatibility. A wide range of selection can be produced through classification, helping users to find the proper regulations which is related.
    顯示於類別:[資訊工程學系碩士在職專班 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML178檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明