中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/81322
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42701731      Online Users : 1427
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81322


    Title: 多重標籤文本分類之實證研究 : word embedding 與傳統技術之比較;An empirical study of multi-label text classification: word2vector vs traditional techniques
    Authors: 饒以恩;Rau, YI-EN
    Contributors: 資訊管理學系在職專班
    Keywords: 文本分類;詞向量;機器學習;Word2Vec;惡意評論;text classification;Document representations;machine learning;toxic comments
    Date: 2019-08-20
    Issue Date: 2019-09-03 15:44:17 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 網路的發展帶動社交媒體突飛猛進。因為社交媒體平台言論自由會造成濫用,像是網路騷擾或惡意評論等等……機器學習的最新進展也已改變了許多領域,電腦視覺、語音辨識和語言處理,本研究想使用機器學習的文本分類來有效地過濾出惡意評論。本研究使用的資料集是來自於Kaggle舉辦的競賽: Toxic Comment Classification Challenge,其資料來源為維基百科之評論,這些評論已被人類評估者標記為惡意且帶有毒性。學生運用機器學習(Machine Learning,ML)的方式搭配不同的向量表示法來進行數據的分析比較與預測。

    本研究中的向量表示法會採用TF-IDF與 Word2Vec兩種方式,且以K-近鄰演算法、支持向量機、人工神經網路、深度學習進行文本的分類。因資料集含有六種多重標籤: toxic、severe_toxic、obscene、threat、insult、identity_hate,故會針對此六種標籤各搭配不同的向量表示法及分類器比較分析。

    實驗結果表示在辨識惡意評論中,精準率(Precision)部分,TF-IDF搭配SVM分類器為本論文最佳組合;而召回率(Recall)部分,則以Word2vec搭配LSTM分類器為本論文最佳組合。
    ;The development of the Internet has led to the rapid advancement of social media. Because the free speech and anonymity of social media characteristic, it causes abuse such as cyber harassment and Toxic Comments. Machine learning have changed many fields, for example computer vision, speech recognition and language processing. I will use the text classification of machine learning to effectively filter out Toxic Comments. The dataset is from the competition organized by Kaggle: Toxic Comment Classification Challenge, whose source is Wikipedia′s comments. These comments have been flagged as malicious and toxic by human evaluators. I will use Machine Learning (ML) method to match different Document representations for data analysis and prediction.

    In this study, the Document representations of the text will use TF-IDF and Word2Vec for comparison and use KNN, SVM, ANN, Deep Learning as text classifier. This data set contains six multi-labels: toxic, severe_toxic, obscene, threat, insult, identity_hate, so the six labels are paired with different Document representations and text classifiers for comparative analysis.

    The results show that in the Precision section, there is best predictive performance in TF-IDF combined with the SVM classifier than Word2Vec. About the Recall section, there is best predictive performance in Word2vec combined with LSTM classifiers.
    Appears in Collections:[Executive Master of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML227View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明