中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/81637
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42694876      Online Users : 1514
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81637


    Title: 切換式靜態輸出回授控制—齊次李亞普諾夫法;Switching Static Output Feedback Controller for Polynomial Fuzzy Systems via Homogeneous Lyapunov Functions
    Authors: 梁恩晟;Liang, En-Chen
    Contributors: 機械工程學系
    Keywords: 平方和(sum of squares);多項式模糊系統(polynomial fuzzy systems);尤拉齊次多項式定理(Euler′s Theorem for Homogeneous Functions);切換式靜態輸出回授控制(switching static output feedback control);最小型片段式李亞普諾夫函數(minimum-type piecewise Lyapunov functions);Sum of squares;Polynomial fuzzy systems;Euler′s Theorem for Homogeneous Functions;Switching static output feedback control;Minimum-type piecewise Lyapunov functions
    Date: 2019-07-24
    Issue Date: 2019-09-03 16:34:38 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文探討多項式模糊系統之切換式靜態輸出回授控制器設計,包含了連續時間系統及離散時間系統。藉由最小型片段式李亞普諾夫函數作穩定性分析,其型式為V(x)=\min_{1\leq l \leq N}\big\{V_l(x)\big\},
    片段式李亞普諾夫函數亦為控制器切換的依據。在連續時間系統中,為了解決非凸項$\dot P(x)$的問題,使用尤拉齊次多項式定理來建立片段函數
    V_l(x)=x^TP_l(x)x=\frac{1}{g(g-1)}x^T\nabla_{xx}V_l(x)x
    在離散系統中,為了避免未知數的影響,以利電腦模擬順利進行,本論文將片段函數定義為V_l(x)=x^TP_l^{-1}(\tilde x)x,
    其中$\tilde x$是不受控制力直接影響的狀態集合,在文中有詳細說明。

    在電腦模擬中,使用了平方和方法檢測穩定性條件,並設計出切換式靜態輸出回授控制器。;In this paper, we study switching static output feedback control problem for both continuous- and discrete-time polynomial fuzzy systems.
    The stabilization of the systems is proved with minimum-type piecewise Lyapunov functions, which have the form V(x)=\min_{1\leq l \leq N}\big\{V_l(x)\big\}.
    Switching mechanism of the controllers is also based on piecewise Lyapunov functions. In continuous-time systems, in order to remove non-convex term \dot P(x), via Euler′s theorem for homogeneous functions we establish piecewise functions as follows.
    V_l(x)=x^TP_l(x)x=\frac{1}{g(g-1)}x^T\nabla_{xx}V_l(x)x
    In discrete-time systems, the piecewise functions are defined as V_l(x)=x^TP_l^{-1}(\tilde x)x$ to prevent problems where \tilde x is the set of states whose corresponding row in B_i(x) are empty. Further details are described in the text.

    In numerical examples, stability conditions and controller synthesis are tested and solved via sum-of-squares approach.
    Appears in Collections:[Graduate Institute of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML130View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明