English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43348847      線上人數 : 1337
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/82073


    題名: 結合特徵線轉換法的生成對抗網路模型;Generative Adversarial Net Based on Feature Line Embedding
    作者: 陳映濃
    貢獻者: 國立中央大學太空及遙測研究中心
    關鍵詞: 遙測影像;特徵空間;拓樸;生成對抗網路;remote sensing image;feature space;topology;Generative Adversarial Net
    日期: 2020-01-13
    上傳時間: 2020-01-13 14:13:53 (UTC+8)
    出版者: 科技部
    摘要: 遙測影像的應用一直以來是熱門的研究議題,例如從紅外線衛星影像(Infrared Image, IR)中進行土地分類便是一項重要的工作。然而,由於IR影像對影像處理來說是一種高維影像,如何從中擷取對土地分類有用的資訊便是一項重要的工作。因此,對高維的衛星影像進行降維,並且在降維空間中擷取重要特徵便直接關係著後續分類結果的成效。除此之外,降維工具除了能夠擷取重要特徵之外,還要能夠保持原資料的拓樸特性,若能保持好原資料的拓樸特性,其實也就增強了特徵空間的區別能力。有鑑於此,我們在本計畫中提出了Fuzzy Kernel Feature Line Embedding,它可以將資料在原空間中的非線性、非尤拉距離的資訊保留下來,並同時可以保留原空間中資料的拓樸特性。而資料在原空間中的拓樸特性即我們認為是一項生成資料良是否足夠擬真的重要指標,因此我們將GAN中的對抗網路判別過程放在FKFLE所建立的特徵空間中來進行,如此即可以判別生成資料是否俱備與原資料相同的拓樸架構,有了相同的拓樸架構,即俱備了相當足夠的一般性,因此可以用來補足遙測影像中訓練資料不足的狀況。 ;The application of remote sensing images has always been a hot research topic. For example, land classification from Infrared Image (IR) is an important task. However, since IR images are high-dimensional images for image processing, how to extract useful information for land classification is an important task. Therefore, the dimension reduction of high-dimensional satellite images and the acquisition of important features in the dimension reduction space are directly related to the effectiveness of subsequent classification results. In addition, in addition to the important features of the dimension reduction tool, it is also necessary to maintain the topological characteristics of the original data. If the topology of the original data is maintained, the ability to distinguish the feature space is enhanced. In view of this, we proposed the Fuzzy Kernel Feature Line Embedding in this project, which can preserve the information of nonlinear and non-Euclidean distance in the original space, and at the same time preserve the topology of the data in the original space. . The topology of the data in the original space is considered to be an important indicator of whether the generated data is good enough. Therefore, we put the anti-network discriminating process in GAN into the feature space established by FKFLE. That is to say, it can be determined whether the generated data is the same as the original data. With the same topology, it is quite sufficient generality, so it can be used to make up for the lack of training data in telemetry images.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[太空及遙測研究中心] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML263檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明