中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/82117
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42712132      在线人数 : 1424
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/82117


    题名: 以仿生機械動態培養系統探討肺癌轉移基因;Identification of Invasion-Associated Genes with Biomimetically Mechanical Dynamic Cell Culture System
    作者: 許藝瓊;張基晟
    贡献者: 國立中央大學生醫科學與工程學系
    关键词: 週期性機械拉力;肺癌轉移;深度學習;微流道晶片;生物標誌;cyclic stretch;lung cancer metastasis;deep learning;microfluidic chip;biomarker
    日期: 2020-01-13
    上传时间: 2020-01-13 14:16:07 (UTC+8)
    出版者: 科技部
    摘要: 肺癌在全球與台灣一直是致死率極高的疾病,儘管目前有許多針對肺癌病患所發展的治療策略,但病人存活率仍然不高。而癌轉移則是導致癌症病患死亡的主因。過去研究大多以靜態培養方式來測量細胞侵襲能力,這種培養方式雖然可以大量的培養細胞,但無法貼近真實生理環境,因此,機械仿生動態培養對於肺癌轉移的研究是必要的。本研究將建立機械仿生動態培養環境中細胞侵襲力與基因蛋白體資料庫,並開發微流道晶片做為偵測肺癌轉移相關基因方法,並結合深度學習方法分析TCGA資料庫中肺癌多種基因體資料找出與無復發存活期相關之標的基因。最後,我們將評估這些基因作為預測肺癌病患存活率與復發率之效用。 ;Lung cancer is the most common cause of cancer deaths in Taiwan and worldwide. Although there are several strategies of treatments for lung cancer, the prognosis and 5-year survival rate of patients remain low due to the cancer metastasis. Cancer metastasis is the major cause leading to mortality for cancer patients. Almost cancer metastasis studies were in static cell culture condition. A lot of cells can be harvested in conventional culturing process. Nevertheless, different drawbacks, such as poor cell quality and less physiological-alike biologic characteristics have been noted among the cells cultured by this static condition. Thus, biomimetic dynamic cell culturing process is needed in the field of cancer metastasis research. This project will generate the invasion database of lung cancer cell lines in biomimetic dynamic cell culturing. The database included the transcriptomic profile by RNAseq and proteomic profile by mass. We used microfluidic chip to detect the invasion-associated genes. We also used deep learning-based autoencoder modeling to integrate multiple-omics data and survival data in TCGA lung cancer cohort. Finally, we will validate potential biomarkers in lung cancer patients.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    显示于类别:[生醫科學與工程學系] 研究計畫

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML288检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明