中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/8214
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43435798      Online Users : 1249
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/8214


    Title: 應用於空間與CGS可調性視訊編碼器之快速模式決策演算法;A Fast Mode Decision Algorithm for Spatial and CGS Scalable Video Coding
    Authors: 吳運達;Yun-Da Wu
    Contributors: 通訊工程研究所
    Keywords: 可調式視訊編碼;空間與CGS可調性;人類心理視覺特性;快速演算法;Scalable video coding;Fast algorithm;psychovisual characteristics;spatial and CGS scalability
    Date: 2008-06-16
    Issue Date: 2009-09-22 11:21:13 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 可調式視訊編碼器除了保有原始AVC/H.264之詳盡搜尋方式外,空間階層間預測更添增了可調式視訊編碼器之計算複雜度,因此,如何降低可調式視訊編碼器之計算複雜度便為一個非常重要的課題。在本論文中,我們利用階層間模式之相關性,設計一個可適應於多重空間及CGS階層之快速視訊編碼模式決策演算法。此外,我們也考慮人類視覺注意力之因素,提出一個運動向量注意力模型,可選擇性地加入我們所設計之快速演算法,在節省編碼時間的同時,仍維持原始主觀視覺品質。實驗結果顯示,當位元率增加及PSNR下降在可以接受範圍下,我們所提出之快速演算法能節省66%~68%的編碼時間,而結合運動注意力模型之快速演算法也能節省50%~ 57%編碼時間,更重要地,從主觀視覺測試結果顯示出結合運動注意力模型之快速演算法相較於我們所設計之快速演算法能提供更接近於原始演算法之主觀視覺品質。 The exhaustive search for macroblock mode decision in the working draft of scalable video coding extension of AVC/H.264 achieves theoretically optimal coding efficiency. However, it also accompanies high computation complexity. For scalable video coding, how to reduce the heavy computation load while there is minor bit-rate increase and PSNR loss is a critical issue for realizing such technology in the consumer electronics.Motivated by this, we present a fast mode decision algorithm for scalable video coding by exploring the correlation of MB modes between layers. Our algorithm is applied to multiple spatial and CGS layers. Additionally, we design a motion attention model (MAM) based on the considerations of the psychovisual issue. This model can be optionally combined with our proposed fast algorithm so that it not only saves the encoding time but also retains the visual quality. Experiments conducted by JSVM8.10 exhibit that the proposed fast algorithm without the MAM saves 66% to 68% encoding time in the acceptable range of PSNR loss and bit-rate increase. Moreover, the proposed fast algorithm incorporating the MAM saves 50% to 57% encoding time. The subjective visual test shows that the better visual quality compared with the proposed fast algorithm.
    Appears in Collections:[Graduate Institute of Communication Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明