中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/82408
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42717854      線上人數 : 1351
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    NCU Institutional Repository > 理學院 > 數學系 > 研究計畫 >  Item 987654321/82408


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/82408


    題名: 關於環的 stable rank,GE-環及 quasi-Euclidean環的研究 II;On Stable Rank of Rings, Ge-Rings and Quasi-Euclidean Rings Ii
    作者: 呂明光
    貢獻者: 國立中央大學數學系
    關鍵詞: Euclidean rings;quasi-Euclidean rings;generalized Euclidean rings;the stable rank of a ring R;rings of algebraic integers.;Euclidean rings;quasi-Euclidean rings;generalized Euclidean rings;the stable rank of a ring R;rings of algebraic integers.
    日期: 2020-01-13
    上傳時間: 2020-01-13 14:51:05 (UTC+8)
    出版者: 科技部
    摘要: 令 R 代表一個 ring with unity,GL(R, n) 代表 the group of all invertible n by n matrices over R,GE(R, n) 代表 GL(R, n) 的子群,generated by invertible elementary n by n matrices over R。在 1966 的一篇論文裡,P. M. Cohn 稱 R 是一個 generalized Euclidean ring, 或簡稱 GE-ring, 假如, 對每一個正整數 n, GL(R, n)=GE(R, n)。在這次申請的計劃裡,我們將嘗試證明:The ring of algebraic integers in a number field F is a GE-ring, provided that the group of units is infinite.過程中 the stable rank of a ring R 這個概念 及 相關的性質會扮演關鍵性的角色。 一切順利的話,我們應該還會找到更多 GE-rings 的新例子。註:此申請案是本人最想執行的計畫。(第一優先) ;Let R be a ring with unity, GL(R, n) the group of all invertible n by n matrices over R and GE(R, n) the subgroup of GL(R, n) generated by invertible elementary n by n matrices over R. If K is a field, then, in linear algebra, GL(K, n)=GE(K, n) for every positive integer n. If R is a Euclidean ring, then it is well-known that GL(R, n)=GE(R, n) for every positive integer n. In 1966 (Publ. Math. IHES 30 (1966), 5-53), P. M. Cohn introduced the concept of a generalized Euclidean ring, i.e., a ring R with unity is called a generalized Euclidean ring, or GE-ring for short, if and only if GL(R, n)=GE(R, n) for every positive integer n. Recently in 2015, we prove that a ring R is a GE-ring if it is a quasi-Euclidean ring which is an another generalization of the concept of a Euclidean ring. (Recall that, in this project, a ring R is a quasi-Euclidean ring, introduced by B. Bougaut (1977) and A. Leutbecher (1978) respectively, if and only if it is a commutative ring with unity and every pair (b, a) of elements in R has a terminating division chain of finite length starting from it, the pair (b, a) with this property is also called a Euclidean pair by A. Alahmadi, S. K. Jain, T. Y. Lam, and A. Leroy (J. Algebra (2014)). As an example, let A be the ring of all algebraic integers in the field of complex numbers. Then A is a quasi-Euclidean ring, but it is not Euclidean.)The notion of the stable rank of a ring R, denoted by sr(R), was introduced by H. Bass in 1964. The results on the stable rank of rings have close relation to the concept of GE-rings. For example, if sr(R) = 1, then R is a GE-ring. As examples, sr(R) = 1 for every local ring R and every Artinian ring R. In this project we will attempt to prove the following: The ring of algebraic integers in a number field F is a GE-ring, provided that the group of units is infinite.On the way the notion of the stable rank of a ring R and the related properties will play crucial roles.If everything goes smoothly we will also find more new examples of GE-rings.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[數學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML259檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明