中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/82789
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42708564      Online Users : 1474
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/82789


    Title: 飛秒雷射製作之複合玻璃光熱效應特性研究;Characteristics of Photothermal Effect in Femtosecond-laser Fabricated Composite Glass
    Authors: 鍾晏齊;Chung, Yen-Chi
    Contributors: 光電科學與工程學系
    Keywords: 飛秒雷射;銀奈米粒子;型變;光熱效應;fs laser;Ag nanoparticles;ellipsoids;photothermal conversion;photothermal effect
    Date: 2020-01-20
    Issue Date: 2020-06-05 17:12:44 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著對綠能源的需求逐日漸增,熱能的產生與儲存是其中一項熱門的環保議題,所有再生能源中,太陽光是近乎無限的能源,利用太陽能的發電技術已成為主流,不過受限於肖克利-奎伊瑟極限(Shockley–Queisser limit),光電轉換效率始終有無法超越的門檻,而目前在市面上的最高光電轉換效率不超過30%,剩下的70%大多是以熱能的方式散失。因此,在此研究中,我們專注於效率較高的光熱轉換技術。在目前的研究顯示,由奈米材料組成的結構中,其效率可高達到70%,甚至是97%,這是由於奈米材料的局域表面電漿共振(LSPR)的特性,能量得以從光的形式有效且直接地轉換成熱能。在眾多奈米材料之中,含有奈米銀的玻璃則是具有應用以及開發的潛力,尤其當入射光源是表面電漿共振的波長下,效率最高,而目前有許多種方式能夠產生此種材料。

    在本研究中,選擇兩階段式離子交換作為製程方法,因為其製程過程簡單且便宜,甚至可以一次大量製作多片樣品。由於鈉-銀離子交換後玻璃的LSPR波長大約位於430 奈米處,市面上的光源較不易取得,因此,這裡使用波長在800奈米以及400奈米的飛秒脈衝進行樣品加工,讓樣品中能夠產生更多色心,使奈米銀從球型沿著雷射偏振方向形變成橢球狀。如此,LSPR波長能夠紅移至目前較容易取得的LED光源波段或是連續波雷射波段。而在雷射加工後的樣品,其LSPR波段確實能由430奈米紅移至綠光波段。在光熱實驗中,以中心波長在515奈米的發光二極體(LED)照射下,驗證了此樣品所產生的溫度的確比一般純玻璃高。在此研究中的光譜結果也與Boundary Element Method (BEM)的模擬相符合。

    ;With the increasing demand for green energy, heat generation and storage turned to be one of the most popular issues, regarding to particularly important environment protection and electric generator exploit. In the utilization of natural energy, sunlight becomes the mainstream for research. However, due to Shockley–Queisser limit, opto-electric conversion efficiency has upper limit. So far, the conversion efficiency of most commercially available solar cell is no greater than 30%, and most of the energy is dissipated in the form of heat. Therefore, in this study, the devices of pthotothermal conversion are focused with the advent of various nanocompsites and nanostructures. The efficiency of photothermal conversion can be raised as higher as 70% in the recent studies. Even in some researches, the efficiency of photothermal conversion can reach to 97%. Because of the relatively high efficiency based on the property of localized surface plasmon resonance (LSPR), the composite of Ag NPs embedded in soda-lime glass has the great potential in storage of energy and heat generation.

    In this research, two-step ion exchange method is applied, providing simple and inexpensive fabrication for the desired composites. In order to red-shift the LSPR of the composite to the wavelength of commercially available LED and continuous (CW) laser, dual-wavelength laser processing at 800 nm and 400 nm are carried out, leading to the transformation and re-growth of spherical Ag NPs into ellipsoids by inducing color centers inside the composite. Indeed, the absorption of the composite increases the temperature rise and exhibits much higher temperature than that of a pure glass within only a few minutes. Upon the irradiation by a green LED (= 515 nm), the experimental results in the research are in close agreement with the simulation by Boundary Element Method (BEM).
    Appears in Collections:[Graduate Institute of Optics and Photonics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML129View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明