中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/82852
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 43330081      在线人数 : 1228
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/82852


    题名: 利用深度學習以降低HEVC模式決策之運算複雜度的研究;A CNN-Assisted Technique for Computation Reduction of HEVC Intra prediction
    作者: 羅國軒;Lo, Kuo-Hsuan
    贡献者: 通訊工程學系
    关键词: HEVC;預測單元;畫面內預測;深度學習;RDO;RMD;HEVC;Prediciton Unit;Intra Prediction;Deep Learning;RDO;RMD
    日期: 2020-01-17
    上传时间: 2020-06-05 17:24:34 (UTC+8)
    出版者: 國立中央大學
    摘要: 視訊編碼標準為高效率視訊編碼(High Efficiency Video Coding, HEVC),比H.264/AVC有更佳的編碼效率。HEVC的畫面內預測中,使用了35個模式來增加預測的精確度,但同時也大幅增加其編碼複雜度。因此本篇論文探討卷積神經網絡和約略模式決策所預測的候選模式來跟全模式搜索的最佳模式比較,準確率方面約略模式決策比卷積神經網絡來的高11.48%,而效能方面卷積神經網絡所運行的時間比約略模式決策高了5.109%,而BDBR卻多上升了0.59%。由我們剛才所討論的結果,我們可以知道卷積神經網絡的預測候選模式沒有約略模式決策來的好,但是兩者之間所選的候選模式從紋理方面可以看出是有相關性的,所以接下來我們會使用卷積神經網絡輔助約略模式決策,此處我們會使用卷積神經網絡的模式機制與機率機制來輔助約略模式決策,在模式機制方面,將會用約略模式決策與卷積神經網絡的候選模式做重疊,如果候選模式沒有重疊則會刪除;而在機率機制方面,將會比較候選模式的機率與閥值的大小,如果過小則會刪除候選模式,藉此減少候選模式個數已達節省時間的效果。在只進行8x8編碼的情況下,實驗結果顯示,當使用模式機制,可以在BDBR上升0.014%下,節省9.76%的時間;使用機率機制,可以在BDBR上升0.008%下,節省10.753%的時間。;High efficiency video coding (HEVC) is the latest video coding standard. To improve predict more accurately, using 35 prediction modes in intra prediction. This process which is meant to improve the efficiency in HEVC intra prediction however leads to a significantly higher computational complexity. In this paper , we discuss candidate mode predicted by CNN and RMD to compare with the best mode for full mode search in terms of accuracy, performance, and texture. We can know that the prediction mode of the CNN is not as good as the RMD, but the candidate mode selected between the RMD and CNN has a correlation, so we will use CNN to assists RMD. Here we will use the CNN′s mode and probability to assist RMD. In terms of the mode, RMD and CNN candidate modes will be overlapped. If the candidate modes do not be overlapped, they will be deleted. In terms of the probability, the probability of the candidate modes will be compared with the threshold value. If value is too small, the candidate modes will be deleted, thereby reducing the number of candidate modes to save time. When only 8x8 encoding is performed, the experimental results show that when the mode is used, BDBR can be increased by 0.014%, saving 9.76% of time; using the probability, BDBR can be increased by 0.008%, which saves 10.753% of time.
    显示于类别:[通訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML186检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明