English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42716449      線上人數 : 1511
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84061


    題名: PADMA:雙向多頭偕同注意力實現多選項之閱讀理解應用於數位學習歷史科目;PADMA: Dual Multi-head Co-attention Multi-choice Reading Comprehension on History Subject for E-Learning
    作者: 賴郁伶;Lai, Yu-Ling
    貢獻者: 資訊工程學系
    關鍵詞: 深度學習;多選項閱讀理解;自然語言處理;Deep Learning;Multi-choice Machine Reading Comprehension;Natural Language Processing
    日期: 2020-07-29
    上傳時間: 2020-09-02 17:59:48 (UTC+8)
    出版者: 國立中央大學
    摘要: 在數位學習導入答題系統通常可作為虛擬助教,減輕老師負擔,隨時為學生提供幫助。給定文章段落及問句,多選項之閱讀理解任務需要模型從選項集預測正確答案,除了使用強大的語言模型作為編碼器,此任務常常需要透過文章、問句及選項的訊息比對,取得三者之間的關聯性,且目前許多方法只考慮問題感知之文章表示法而忽略文章感知之問題表示法。
    本論文提出一個選擇題答題系統,利用中學課文做為知識來源,將文章、問句及選項序列透過編碼器轉換成含上下文訊息之向量表示法。我們模擬人類作答的思維,加入兩個解題方法:(1)文章句子選擇,擷取與問句關聯性最高的文章句子,(2)選項交互參考,四選項互相比對訊息後進行編碼,在我們的題庫上有更好的效果。再連接雙向多頭注意力機制產生進階表示法,經分類器產生預測答案。對公開資料集及我們的歷史題庫的實驗結果顯示,我們的模型與基準模型相比有更好的效能。
    ;Given a passage and a question, multi-choice reading comprehension tasks require model to predict the correct answer from a set of candidate answer options by using a strong language model as encoder. The tasks usually need information comparison between passage, question and answer option to get the relevance among them. Most of the existing methods consider the question-aware passage representation but not passage-aware question representation.
    In this paper, we will present the ‘PADMA’ stands for Passage sentence selection and Answer option interaction integrated on Dual Multi-head co-Attention. We propose a multi-choice question answering system PADMA, which collects the middle school textbook as a knowledge source, and encodes the sequence formed from passage, question and answer option to a contextualized vector representations. We simulate the way human solve multi-choice problem, and integrate two reading strategies: (1) passage sentence selection, which helps decide the most relevant sentence from the passage corresponding to the question; (2) Answer option interaction, which encodes bilinear representations between each two options. Then a dual multi-head co-attention model is used to generate the advanced representation and a decoder is to calculate the answer prediction. The experiment result shows that our proposed model achieves a better performance compared with base models.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML174檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明