中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/84088
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42729117      Online Users : 1209
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/84088


    Title: 建構深度學習CNN模型以正確分類傳統AOI模型之偵測結果;Building CNN Model to Reclassify Overkill Fabrics from Company′s AOI Defect Results
    Authors: 芮妮雅;Akhmalia, Rania
    Contributors: 資訊工程學系
    Keywords: 瑕疵;defect;CNN;AOI
    Date: 2020-07-30
    Issue Date: 2020-09-02 18:03:04 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 宏遠是一家紡織廠商,利用AOI來偵測紡織布上的瑕疵。然而目前AOI無法有效解決他們所遭遇的問題,主要是因為「瑕疵」還能夠細分成多個種類。AOI使用三個反射光相機與三個穿透光相機,依據AOI的規則,擷取出多種瑕疵種類,如:摺痕、斷線、髒污、脫線、白點等。然而宏遠卻不同於AOI規則,對瑕疵種類有不同的定義,他們認為的瑕疵如:破洞、斷經等種類。 因為兩種瑕疵定不同,使得AOI偵測出的瑕疵影像造成多達90%的誤判,因此宏遠專業的檢測員需要重新將誤判影像分類成有瑕疵與無瑕疵。而我們的目標則是要建立深度學習的模型,來減少檢測員花在重新分類上的勞力。這項作業使用Autoencoder來重建資料集,再利用CNN進行分類。實驗的結果顯示我們的模型能夠減少檢測員高達80%以上的勞力耗費,同時保有FNR小於5%與FPR小於15%的表現。;The textile company applied AOI to detect a defect on fabric automatically. In their case, AOI failed to overcome this problem because there are differences defect categories. AOI has defect with categories among others; fold, black thread, broken thread, hooked thread, needle mark, mosquito, stain, thread-off, white spot and uneven thickness. Whereas, Textile company has different defects categories, its categories among others; Thinning, missing weft, stop mark, weft mark, loose weft, warp break, mechanical section and fold back. These differences caused more than 90% of captured images are not defect (overkill). A Professional Inspector in Textile Company reclassified those overkill images into real defect and non-defect images. Our goal in this work is, to reduce a Professional Inspector working loads by proposed two approaches. The first approach is, building a tiny and light CNN architecture as classifier model. While second approach is, combining Autoencoder to reconstruct the dataset as an input to CNN model that built in first approach. The result shows that the models are able to reduce a Professional Inspector working loads up to 90% with maximum FNR 5% and FPR less than 5%.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML93View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明