中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/84104
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42729818      在线人数 : 1280
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84104


    题名: 利用分層共現網絡評估發展遲緩兒童的精細運動;Exploiting Hierarchical Co-occurrence Network to Assess The Fine Motor for Children with Developmental Delays
    作者: 李丞洋;Li, Cheng-Yang
    贡献者: 資訊工程學系
    关键词: 早療;精細動作;骨架追蹤;分層共現網路;轉移學習;early intervention;fine motor;skeleton tracking;hierarchical co-occurrence network;transfer learning
    日期: 2020-07-31
    上传时间: 2020-09-02 18:05:01 (UTC+8)
    出版者: 國立中央大學
    摘要: 在精細動作發展的應用中,應考慮即早性、普遍性、訓練的持續性和運動過程的紀錄。許多研究在兒童時期即給予早期評估和療育,然而並非所有的精細動作發展遲緩患者都能得到良好的療育資源,傳統的介入需要治療師在場並使用訓練系統和評估量表進行療育,在目前供不應求的情況下,治療師自然難以到偏鄉給予長期的治療。因此,我們開發了一款線評估的遠端系統,並提出了一種新穎的精細動作品質評估方法,該方法通過使用人機互動、骨架追蹤技術收集兒童的精細運動,然後使用深度學習模型對兒童的精細動作質量進行分析。使用人機交互技術來開發遊戲可以提高孩子的參與感並記錄整個評估過程,並搭配Leap Motion Controller (LMC)感測器,它具有出色的手部追蹤效果。為了證明分層共現網絡識別動態精細動作的有效性,使用Shape Retrieval Contest(SHREC)數據集進行驗證,結果也證明此方法的準確性勝過當前文獻的方法。之後,我們使用轉移學習技術來轉移公開數據集的知識,實驗也證實了更好的評估。;In the application of the development of fine motor, consideration should be given to the earlyness, universality, continuity of training and the record of the motor process. Many research have been given early assessment and intervention during childhood, but not all patients with developmental delays of fine motor can receive good treatment resources. Traditional intervention requires therapist to use the training system and assessment scale for treatment on the spot, which is currently in short supply. it is difficult for the therapist to go to a remote area for long-term treatment. Therefore, we have developed a remote system that can achieve online assessment, and also proposed a novel method for fine motor quality assessment that collect children′s fine motor using human–computer interaction, skeleton tracking technology, and then use the deep learning model to analyze the quality of the fine motor. Using human-computer interaction technology to develop games can increase children′s sense of participation and record the entire assessment process. Hand interaction uses Leap Motion Controller (LMC), which has excellent hand tracking effect. In order to prove the effectiveness of the Hierarchical Co-occurrence Network (HCN) to recognize dynamic fine motor. we used the Shape Retrieval Contest (SHREC) dataset for verification, the method was also proven to outperform in accuracy competing approaches of the current literature. After that, we use transfer learning technology to transfer the knowledge of the open dataset, the experiment also confirmed a better assessment.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML105检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明