中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/84272
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42692190      在线人数 : 1603
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84272


    题名: 次模深度壓縮感知用於空間搜尋;Spatial Search using Submodular Deep Compressed Sensing
    作者: 蔡予中;Tsai, Yu-Chung
    贡献者: 數學系
    关键词: 次模性;搜尋;壓縮感知;自動編碼;深度學習;Submodularity;Search;Compressed Sensing;Autoencoder;Deep Learning
    日期: 2020-07-20
    上传时间: 2020-09-02 18:46:34 (UTC+8)
    出版者: 國立中央大學
    摘要: 因次模函數的各式各樣應用(如物件搜尋、三維地圖重建),其已經引起人工智慧社群的注意,
    搜尋受害者是搜救行動的關鍵技術,但是找到最佳搜尋路徑是NP困難問題。
    因空間搜尋的目標函數具次模性,貪婪演算法可產生近似最佳解。
    然而,因N個集合的次模函數輸出數量是$2^N$,導致學習次模函數是一大挑戰。
    最先進的方法是以壓縮感測技術,在頻域學習次模函數,再於空間域還原。
    然而,傅立葉基底的數量和集合感測重疊區域的數量相關。
    為了能克服此問題,本研究提出次模深度壓縮感測(SDCS)方法來學習次模函數,
    此演算法包含學習自編碼器與傅立葉係數,學習後的網路可以用於預測次模函數的$2^N$數值,
    實驗證明此演算法比基準方案更有效率。;The AI community has been paying attention to submodular functions due to their various applications (e.g., target search and 3D mapping).
    Searching for the victim is the key to search and rescue operations but finding an optimal search path is an NP-hard problem.
    Since the objective function of the spatial search is submodular, greedy algorithms can generate near-optimal solutions.
    However, learning submodular functions is a challenge since the number of a function′s outcomes of N sets is $2^N$.
    The state-of-the-art approach is based on compressed sensing techniques, which are to learn submodular functions in the Fourier domain and then recover the submodular functions in the spatial domain.
    However, the number of Fourier bases is relevant to the number of sets′ sensing overlapping.
    To overcome this issue, this research proposed a submodular deep compressed sensing (SDCS) approach to learning submodular functions.
    The algorithm consists of learning autoencoder networks and Fourier coefficients.
    The learned networks can be applied to predict
    $2^N$ values of submodular functions.
    Experiments conducted with this approach demonstrate that the algorithm is more efficient than the benchmark approach.
    显示于类别:[數學研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML177检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明