中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/84336
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42712311      線上人數 : 1410
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84336


    題名: Sensing and actuation with interpenetrated polymers, application in microrobotics
    作者: 彭迦儒;Peng, Chia-Ju
    貢獻者: 機械工程學系
    關鍵詞: 軟機械人;導電聚合物;致動器;感測器;Soft robotics;Conducting polymers;Actuators;Sensors
    日期: 2020-07-29
    上傳時間: 2020-09-02 19:06:12 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文針對導電互穿聚合物(C-IPN)換能器之特性進行量測與分析,藉由了解C-IPN在致動或感測過程中之機械與電壓響應,包括輸出電壓、形變量、出力等參數關係,來研究該材料作為致動器、感測器在微機器人領域之應用可行性,且實施在C-IPN控制系統中。導電聚合物的優點是驅動電壓低、變形能力大、易於製造以及可以與微機電製程相整合。C-IPN為一類以導電聚合物PEDOT為主所構成之三層互穿結構(導電聚合物/固態電解質/導電聚合物)智能材料,由於可逆的電化學能量轉換過程,導電聚合物具有作為致動器與力學感測器的發展潛力。
    為了快速了解C-IPN的特性與降低實驗操作中精密量測的困難度,本研究採取先製作大尺寸樣本在巨觀的尺度下進行量測與探討,並將結果驗證與應用於小尺度樣本上。研究中探討了該導電聚合物致動與感測之性能。在機械響應方面,其力學模型可模擬與估算該細長形彎曲C-IPN換能器之自由位移和輸出力等機械產出,通過實驗和驗證,結果顯示了尖端位移、受力、與驅動電壓的關係。在電壓響應方面,實驗中測量了在不同彎曲條件下C-IPN的輸出訊號,並導出電響應的等效電路模型參數,以便識別C-IPN在受壓情形下輸出電壓隨時間變化的關係。此外,本研究針對隨時間下降之感測電壓與電量,提出了一種補償方法來平衡導電聚合物感測器的電壓損失。
    為了同時展現同一材料感測和致動的功能,本文以微型鑷子為例,展示了由一C-IPN致動臂與C-IPN感測臂組成之夾取裝置,最終目標為設計與發展高自由度微型鑷子或其他軟機械人及微型機器人應用。C-IPN鑷子夾取裝置可透過控制系統設置驅動電壓以操作致動臂之抓握力,夾持一物體並利用感測臂之輸出訊號來進行抓取狀態之監測。夾持與釋放物體過程中之各階段皆成功以實驗線性模型進行預測與識別,量測結果可用於建立回授控制,並充分展示了C-IPN換能器之應用潛力。
    ;This thesis deals with the measurements, modeling, and the demonstration of a conducting polymer transducer for robotic applications. As a subfamily of electroactive polymers, conducting polymer has advantages of low operating voltage, large deformation capabilities, ease of manufacturing, and integration within the micro-electro-mechanical system (MEMS). Because of a reversible electrochemical process, conducting polymers can be used as actuators or mechanical sensors. In this work, we investigate a PEDOT-based conducting polymer with the architecture of interpenetrating polymer networks (IPN) from a robotic perspective. Thanks to the pseudo-trilayer compact structure, this conducting polymer is promising for applications of great interest in soft sensors and soft actuators at the macro- or microscale.
    The behaviors and performances of the conducting polymer transducer as a bending actuator and as a bending sensor are investigated, respectively. Two working modes, namely actuation and sensing, are identified through modeling and experimental validations. With the experiments and validations, the performances of the slender-shape bending polymer actuator, including the free displacement and the output force, are characterized based on the mechanical model. Mathematical derivation and measurements are employed to identify the parameters. The results show the tip displacements and the forces of the bending actuators versus time, position, and given voltage. The electrical responses of the bending polymer sensors in different bending conditions are measured. Analytical functions of electrical responses are derived in order to identify the sensing outputs and the parameters of the model. The capability of the electrical model to predict the output voltage of the bending sensor versus time in a good agreement with experiments is shown in the study. Besides, the sensing signal drops over time, especially in quasi-static mechanical deformation. It is characterized based on modeling, and a compensation method is proposed to balance the decreasing voltage of the polymer sensor.
    To demonstrate both the functions to sense and actuate achieved within the same material, a soft gripper made of two polymer fingers (one active and one passive) is presented in this thesis. This is a promising first step towards more complex 3D structures. The gripping force of the active finger can be set with the driving input and estimated by the proposed mechanical model. The passive finger of the gripper outputs a sensing signal when grasping an object, which is useful to monitor the contact with the object and to control the gripper in closed-loop. A sphere was successfully lifted in the experiment, and we were able to detect the gripping phase and the time when the contact was broken. The gripping force was monitored with the corresponding sensing output by the linear model of the polymer sensor.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML121檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明