摘要: | 微型超級電容器(micro-supercapacitors,MSCs)為一種新型電化學儲能元件,因為具有高功率密度、高充放電速率、體積小、使用壽命長、可彎折、綠色環保等特點,被視為現代儲能元件之一大選擇,然而,微型超級電容器現今面臨的最大挑戰為成本高、電解液洩漏、製程複雜等問題,因此如何解決這些問題並保持著高功率為本實驗的一大考驗。 本實驗選擇利用電泳沉積之方法來製備微電容,電極方面選擇使用碳布的纖維,而活性材料方面則是利用電化學剝離石墨烯(electorchemical exfoliation graphene, ECG),此實驗可以製造出全固態(包含電解液)的柔性微電容,該方法顯示了一種簡單、快速且無汙染的製程,應用於生產及組裝具有成本效益且高功率的微型電容器。 本實驗結果顯示此微電容元件具有良好的單位面積電容179.9 mF/cm2,且在彎曲測試時,當彎曲角度達到0°時,電容幾乎無劣化,並且當彎曲角度回復至180°時,電容仍保有高於99%的電容維持率,這歸因於石墨烯電極所提供的高擴散路徑以及促進離子傳輸能力,與此同時,在15000次充放電循環後仍保持高達95%以上的循環穩定性,顯示此元件擁有卓越的操作穩定性以及機械柔韌性。 此外,此微電容元件在能量和功率密度分別為63.96 Wh/cm2以及23485.1 W/cm2。並且,元件的輸出電流與電壓可以利用並聯和串聯數個微電容元件來提升,去達到各種生活應用上的所需效能,也因為其纖維電容之特性,亦可以縫紉於衣物或不同基板材料上,成功演示穿戴式電子元件的展現,最重要的是,這項工作提供了一種具經濟效益的製程來生產高能量與功率密度的固態可撓式微電容,提供未來可穿戴式元件一個新里程碑。
;Micro-supercapacitors (MSCs) are a new type of electrochemical energy storage components that have a high power density, high charge/discharge rate, small size, long cycle life, flexible, environmentally friendly, etc. However, the biggest challenges of MSCs is the limitation of high cost, electrolyte leakage, and complicated manufacturing processes. Therefore, this study aim to solve the manufacturing process and maintaining a high power density of MSCs by using the electrophoretic deposition (EPD. Here, we reported an all solid state and flexible MSCs by comprising the electrochemically exfoliated graphene (ECG) as electrode with the solid-state electrolyte through the controllable EPD process on carbon fiber (F-MSCs). This method shows a scalable, rapid, and eco-friendly process to fabricate and assemble F-MSCs with cost-effective and high-power/energy density. As a result, the F-MCSc exhibit a high area capacitance of 179.9 mF/ cm2, and maintenance performance of capacitance even under the bending test (from 180o to 0o and back to 0o) with the capacity retention higher than 99%. Also, F-MCSc demonstrates a high cycle stability of up to 95% after 15000 cycles, which was attributed to creating a high diffusion path, promoting ion transport capability, and excellent mechanical flexibility. In addition, the energy and power density of F-MSCs are 63.96 Wh / cm2 and 23485.1 W / cm2, respectively. Furthermore, the output current and voltage of the F-MSCs can be further improved by using several micro-capacitor components with parallel and series connections to fulfill the practical demands of various applications. Finally, we demonstrated the as-prepared F-MSCs could be integrated into with clothing or different substrate materials. This work provides a cost-effective process to produce high energy and power density as well as the all solid state and flexible MSCs, which provids a new milestone for wearable components in the future. |