中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/84744
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42709166      Online Users : 1445
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/84744


    Title: 一些流構耦合與不可壓縮極限的數學流體力學問題;Some Fluid-Structure Interacting and Incompressible Limit Problems in Mathematical Fluid Mechanics
    Authors: 鄭經斅
    Contributors: 數學系
    Keywords: 流構耦合;不可延展的囊泡;不可壓縮極限;低馬赫數極限;低洛士比數極限;高速旋轉;微晶同構;雅可比行列式;fluid-structure interaction;inextensible vesicle;incompressible limit;low Mach number limit;low Rossby number limit;fast rotation;diffeomorphism;Jacobian
    Date: 2020-12-08
    Issue Date: 2020-12-09 10:49:48 (UTC+8)
    Publisher: 科技部
    Abstract: 在這個計畫中我們提出三個數學問題:一、不可延展的囊泡與黏滯流體的交互作用:在這個子計畫中我們探討一個已經在數值模擬界被廣泛研究的流構耦合問題,試著提供這個模型的解存在之數學理論。二、具科氏力的流體之不可壓縮極限:在這個子計畫中我們探討一具科氏力作用的可壓縮流體在馬赫數與羅斯比數在特定方式趨近到零的情況之下,可壓縮流之解的強收斂行為。三、給定雅可比行列式與邊界值之微晶同構:在這個子計畫中我們探討如何在給定一微晶同構的雅可比行列式與邊界條件之下建構出該微晶同構。我們將聚焦在取得解在解空間中的估計。 ;In this project we propose three problems:1. Inextensible vesicle interacting with viscous: In this sub-project we study a fluid-structure interaction problem that is well-studied in the society of numerical simulations. We try to provide the existence theory of solutions to the model people used to perform numerical simulations.2. The incompressible limit of flows with Coriolis force: In this sub-project we study the incompressible limit problem of compressible fluids with Coriolis force when Rossby number and Mach number approaches zero in a specific way. We focus on the strong convergence instead of the weak convergence of the solution to the compressible fluids.3. Diffeomorphism with prescribing Jacobian and boundary data: In this sub-project we focus on the construction of a diffeomorphism whose Jacobian and boundary data are prescribed. We focus on providing estimates of solutions with given data.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Department of Mathematics] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML190View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明