本論文基於台灣半導體製造公司所提供的0.35μm 2P4M互補式金屬氧化物半導體微機電系統(CMOS-MEMS)製程的規範,研究符合該製程的熱電堆裝置的預設紅外線吸收區域之次波長週期性結構對紅外線吸收能力的影響。 首先於數值分析前,將根據台灣半導體製造公司的製程規範,調整所需之結構參數,並委託台灣半導體製造公司利用整合CMOS專業製程的優勢進行打樣,製作出符合所需參數的半導體試製樣品,在這些製造出來的樣品量測的結果與模擬分析的結果相似。 經由上述製程規範,利用模擬方式探討了許多次波長週期性結構參數對CMOS-MEMS熱電堆的紅外線吸收特性的效應,探討不同的次波長週期性結構後,發現以六邊形排列的次波長孔洞結構結果明顯優於以四邊形排列的次波長孔洞結構結果,當目標溫度在60°C時,比不使用次波長孔洞的結構時高3.532倍,此外還發現一個特殊的結果,即是在先前研究之長方形次波長孔洞中,若保留部分材料,發現在加入具有新形式的次波長柱狀結構後也可增加感測器的敏感度,總體最佳結果為當應用理想製程中最小線寬之設定,當目標溫度在60°C時,比不使用次波長孔洞的結構時高3.629倍,以及發現在不對稱型次波長結構最佳結果中,而當目標溫度在60°C時,比不使用次波長孔洞的結構時高3.666倍。顯然,當在熱電堆裝置的有效區域中加入次波長孔洞結構時,可以發現紅外吸收率很明顯的增強,因此對次波長孔洞結構之參數的優化是絕對必要的。 ;This research based on the 0.35μm2P4M complementary metal-oxide-semiconductor micro-electro-mechanical-systems (CMOS-MEMS) process specification provided by Taiwan semiconductor manufacturing company (TSMC), and studies the subwavelength periodic structure of the preset infrared absorption region of the thermopile device that meets the process Influence on infrared absorption capacity. A thermopile device with sub-wavelength hole array (SHA) is numerically and experimentally investigated. The infrared absorbance (IRA) effect of SHAs in active area of the thermopile device is clearly analyzed by the finite-difference time-domain (FDTD) method. The prototypes are manufactured by the 0.35 μm 2P4M CMOS-MEMS process in TSMC. The measurement results of those prototypes are similar to their simulation results. Based on the simulation technology, more sub-wavelength hole structural effects for IRA of such thermopile device are discussed. It is found from simulation results that the results of SHAs arranged in a hexagonal shape are significantly better than the results of SHAs arranged in a square and the infrared absorption efficiencies (IAEs) of specific asymmetric rectangle and elliptical hole structure arrays are higher than the relatively symmetric square and circular hole structure arrays and the overall best result is up to 3.532, 3.629 and 3.666 times higher than that without sub-wavelength structure at the target temperature of 60?C when the minimum structure line width limit of the process is ignored. Obviously, the IRA can be enhanced when the SHAs are considered in active area of the thermopile device and the structural optimization of the SHAs is absolutely necessary.