中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/85084
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42696073      Online Users : 1480
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/85084


    Title: 歐式空間二距離集合之探討;A study of two-distance set in Euclidean space
    Authors: 林軒宇;Lin, Xuan-Yu
    Contributors: 數學系
    Keywords: 二距離集合;球面二距離集合;Two-distance set;Spherical two-distance set
    Date: 2020-10-20
    Issue Date: 2021-03-18 17:37:20 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在此論文中,首先先介紹二距離集合的定義,以及相關的文獻探討。之後介紹二個計算最大二距離集合個數的方法,線性規劃和半正定規劃。以及列出在 3 和 4 維中,若固定兩個內積值,去找此集合上界為整數的構造,與計算這些構造的最小能量是否為現在找出來的最小的解。然後用線性規劃證明當內積值為 ?1、0,最大二距離集合的上限為 2n。最後列出 3 維中,特殊角的構造和 3 維二距離集合個數為 5 個點和 6 個點的所有構造。
    ;In this thesis, we first introduce the definition of the two-distance set and the related literature discussion. Second, two methods for calculating the maximum two-distance set
    are introduced, graph representation, linear programming and semidefinite programming method. Third, we try to find the structures if the upper bound of such two-distance set are integer, and check whether it is an energy minimization configuration. Fourth, when the inner product values are ?1 and 0, using linear programming to prove that, the maximum two-distance set is 2n. Finally, the constructions of two-distance set of the special angles and the cardinality of two-distance set with 5 points and 6 points are listed in 3-dimensions.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML142View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明