中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/85090
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42691528      Online Users : 1553
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/85090


    Title: Learning Spatial Search and Map Exploration using Adaptive Submodular Inverse Reinforcement Learning
    Authors: 吳季潔;Wu, Ji-Jie
    Contributors: 數學系
    Keywords: 空間搜尋;地圖探索;自適應次模;逆強化學習;壓縮感測;Spatial search;Map exploration;Adaptive submodularity;Inverse reinforcement learning;Compressed sensing
    Date: 2021-01-26
    Issue Date: 2021-03-18 17:38:20 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 找到空間搜尋和地圖探索問題的最佳路徑是NP-hard。由於空
    間搜尋和環境探索是人類日常活動之一, 因此從資料中學習人
    類行為是解決這些問題的其中一種方法。利用兩個問題的自適
    應次模性, 本研究提出了一種自適應次模逆強化學習(ASIRL)
    演算法來學習人類行為。ASIRL方法是在傅立葉域中學習獎勵函
    數, 並在空間域上對其進行重建,近似最佳路徑可以透過學習
    獎勵函數算出。實驗顯示ASIRL演算法的表現優於現有方法(例
    如REWARDAGG和QVALAGG)。;Finding optimal paths for spatial search and map exploration problems are NP-hard. Since spatial search and environmental exploration are parts of human central activities, learning human behavior from data is a way to solve these problems. Utilizing the adaptive submodularity of two problems, this research proposes an adaptive submodular inverse reinforcement learning (ASIRL) algorithm to learn human behavior.
    The ASIRL approach is to learn the reward functions in the Fourier domain and then recover it in the spatial domain. The nearoptimal path can be computed through learned reward functions. The experiments demonstrate that the ASIRL outperforms state of the art approaches (e.g., REWARDAGG and QVALAGG).
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML180View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明