English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42647206      線上人數 : 979
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/85143


    題名: 應用深度學習與物聯網評估CNC加工時間;Estimate CNC Cycle Time using Deep Learning and IoT Technology
    作者: 陳柏宇;Chen, Po-Yu
    貢獻者: 機械工程學系
    關鍵詞: 循環時間;小批量生產;電腦數值控制;數值控制;深度學習;Cycle Time;Long Short-Term Memory;Small Batch Production;Computer Numerical Control;Numerical Control;Deep Learning
    日期: 2021-01-20
    上傳時間: 2021-03-18 17:47:26 (UTC+8)
    出版者: 國立中央大學
    摘要: 準確預測加工時間,對於預測交貨時間以及製造成本非常重要。對於使用電腦數值控制(Computer Numerical Control, CNC)工具機進行小批量生產時,評估數值控制(Numerical Control, NC)程式的循環時間會是製造成本和調度排程的關鍵問題。本研究將提出一系列的方法進行收集資料、前處理輸入資料、以及開發深度學習模型。由於NC程式可被視為一種機器語言,因此本研究使用長短期記憶(Long Short-Term Memory, LSTM)模型做為此深度學習模型的核心。
    首先,使用CAM軟體分析產品CAD檔之後建立刀具路徑與產生NC程式。接著使用CNC執行NC程式並取得運行資料,再將NC程式與運行資料經過擬合處理,合併為單節運行時間資料。接著,使用簡單的加工案例對研究方法進行驗證和調整,找出合適的深度學習模型。較佳的模型為一層64節點的LSTM、一層32節點的LSTM、以及一層單節點的Dense;適合的輸入資料為單節之刀具路徑長除以單節之進給速度,且適合的輸出資料為單節運行時間,並在複雜的加工案例進行驗證測試。
    本研究提出評估準確度的指標應為總時間誤差率、單節平均誤差值、以及實際結果與預估結果的相關係數。在相關的案例中,加工時間的預測總時間誤差率約在0.01%與0.2%間,單節平均誤差值約在0.005秒與0.041秒間,以及實際結果與預估結果的相關係數約在96%與99.9%間。




    關鍵字:循環時間、(Long Short-Term Memory, LSTM)、小批量生產、電腦數值控制(Computer Numerical Control, CNC)、數值控制(Numerical Control, NC)、深度學習。
    ;Accurate prediction of machining time is very important for estimating delivery time and manufacturing costs. When using Computer Numerical Control (CNC) machine for small batch production, evaluating the cycle time of Numerical Control (NC) programs is a key issue for manufacturing costs and scheduling. This study propose a series of approaches for collecting data, pre-processing input data, and developing deep learning models. Since NC programs can be regarded as a kind of machinery language, this study uses the Long Short-Term Memory (LSTM) as the core of the deep learning model.
    Firstly, CAM software is applied to analyze product CAD files to create tool paths and generate NC programs. Then a CNC machine runs the NC programs to generate the dynamic data. The NC program and the dynamic data are combined into a set of single block data. After that, regular machining cases are applied to study the deep learning model The best model is one 64-node LSTM layer, one 32-node LSTM layer, and an one-node dense layer as the outputting layer. The suitable input data is the ratio of distance and feed rate, the output data is runtime of the target block, and conduct verification tests on the complex machining cases.
    The study proposed the performance indexes to evaluate the performance of our model including the error rate of total cycle time, the average runtime error of single blocks, and the correlation coefficient between the actual results and estimated results. In the related cases, the estimated total time error rate of processing time is between 0.01% and 0.2%, the average error of single block is between 0.005 sec and 0.041 sec, and the correlation coefficient of actual results and estimated results is between 96 % and 99.9 %.

    Keywords: Cycle Time, Long Short-Term Memory (LSTM), Small Batch Production, Computer Numerical Control (CNC), Numerical Control (NC), Deep Learning.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML145檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明