本研究主要是使用輸送帶設備帶動顆粒來進行實驗、並利用影像擷取技術及Voronoï影像分析法來研究二維顆粒之流動行為。 主要分非均勻流與均勻流兩方面來探討,在非均勻流部分,是以其幾何特性為分析方向,並藉由四種不同傾斜坡度(0°、5°、10°、15°)條件下之向量關係及高程剖面關係來瞭解其中之奧妙;均勻流部分,則是用四種不同高度之條件下,以速度分佈、擾動速度、粒子溫度、剪應變率、Dd值等物理量為主要探討項目,最後再說明如何將顆粒流分成三段大小不一的流層。 This study performs experimental work on the slow granular flow on the conveyor belt. The Voronoï image algorithm is used to study the mobile behavior of two-dimensional particles. The flow patterns of the granular flows are categorized into nonuniform flow, and uniform flow, respectively. In the nonuniform flow regime, the geometry characteristics at four slopes(i.e. 0°,5°,10°,15°),the relationship between velocity vectors and the slope configuration are examined.; In the uniform flow regime, the velocity distribution, the velocity fluctuation, granular temperature and the strain rate are evaluated. The related physical quantity are discussed as well. The stratification of flow phenomenon of three different layers, i.e. free shear layer on top, forced shear layer at bottom and plug zone in between, is mainly a function of particle thickness.