中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/86338
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42715948      線上人數 : 1456
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86338


    題名: 近乎於量化參數最佳化應用於HEVC畫面內解碼之後處理機制;Nearly QP-Optimized Post Processing for HEVC Intra Prediction
    作者: 陳永祐;Chen, Yung-You
    貢獻者: 通訊工程學系在職專班
    關鍵詞: 高效率視訊編碼;畫面內預測;失真影像補償;卷積神經網路;卷積神積網路模型數量縮減;HEVC;Intra prediction;Compensate for the distorted image;Reduction the number of CNN Models
    日期: 2021-08-13
    上傳時間: 2021-12-07 12:34:52 (UTC+8)
    出版者: 國立中央大學
    摘要: 在影像品質不斷進步之下,人們對影像資料的需求量大幅增加。為了因應高解析度的影像,高效率視訊編碼(High Efficiency Video Coding,HEVC)能夠比上一代的視訊標準高出兩倍的壓縮率,這是因為高效率視訊編碼在影像壓縮技術中使用到編碼單元、預測單元、轉換單元以及量化等方式,而進行影像壓縮過程中,為了降低傳輸資訊,編碼使用到量化參數造成影像的失真。因此本論文解碼端使用卷積神經網路的架構進行反量化失真影像補償,而在此提出兩種卷積神經網路對於失真影像補償的主題,一個是CNN卷積神經網路對於各種影像品質優化的改善程度,另一個則是CNN卷積神經網路模型量化參數縮減。經過多次的實驗之後,在不影響原始影像的條件之下,解碼端透過CNN卷積神經網路模型只需要8個量化參數QP22,QP27,QP32,QP37,QP40,QP45,QP48,QP50取代原來QP31~QP51等31個量化參數且達到一樣的影像補償效果。;With the continuous improvement of image quality, people′s demand for image data has increased significantly. In order to handle high-resolution images, High Efficiency Video Coding (HEVC) can be twice as compressed as the previous generation of video standards. Because of HEVC uses coding units、prediction units、transfor units and quantization in image compression technologies. In order to reduce transmission information, encoding uses quantization parameters(QP) to cause image distortion. Therefore,decoding uses the convolutional neural network(CNN) architecture to perform inverse quantization of distortion image compensation in the end of this paper, and here are two topics of CNN compensation for distorted images, one is CNN for various image quality of the optimization, another is the reduction of the quantization parameters number of the CNN model. After many experiments, without affecting the original image, the decoder only needs 8 quantization parameters QP22, QP27, QP32, QP37, QP40, QP45, QP48, and QP50 to cover the original CNN model 31 quantization parameters such as QP31~QP51, and achieve the same image compensation effect.
    Keywords: HEVC, Intra prediction, CNN, Compensate for the distorted image, Reduction the number of CNN Models
    顯示於類別:[通訊工程學系碩士在職專班 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML117檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明