English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42717272      線上人數 : 1538
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86430


    題名: 基於上下文信息的新型順序推薦深度學習模型;A Novel Sequential Recommendation Deep Learning Model based on Contextual Information
    作者: 泰提潘;Thaipisutikul, Tipajin
    貢獻者: 資訊工程學系
    關鍵詞: 機器學習;順序行為;循環神經網絡;注意力機制;情境意識;Machine learning;Sequential Behavior;Recurrent neural network;Attention mechanism;Context awareness
    日期: 2021-06-09
    上傳時間: 2021-12-07 12:49:43 (UTC+8)
    出版者: 國立中央大學
    摘要: 過去幾年中,基於深度學習的模型(DL)受到了很多關注,尤其是在順序推薦任務領域。由於其處理複雜數據的能力,當前的順序DL研究工作已經超越了傳統模型,例如基於Markov鍊和基於因子分解的模型。但是,基於順序DL的模型的研究仍有改進的空間。特別是,如何設計有效的DL模型來處理不同場景下的順序推薦任務。在這種情況下,本文通過考慮現有方法的當前局限性,重點研究基於DL的順序推薦系統。具體來說,我們演示了順序推薦過程的概述概念,介紹了相關的最新算法,總結了影響基於DL的模型性能的關鍵因素,提出了用於復雜環境下順序推薦任務的新型基於DL的方法,並進行相應的評估,以顯示我們提出的模型在最新方法上的有效性。最後,我們通過系統地概述當前的挑戰,未來的方向以及我們在該領域的貢獻來結束我們的論文。最後,我們認為我們提出的項目對現有的序列感知推薦工作具有很高的積極貢獻。;Deep learning based models (DL) have received a lot of attention in the past few years especially with the domain of sequential recommendation tasks. Due to its capability to deal with complex data, currently sequential DL research works have surpassed traditional models such as Markov chain-based and factorization-based models. However, there is a room for improvement on the studies of Sequential DL-based models. Particularly, how to design an effective DL model to handle the sequential recommendation tasks under different scenarios. In this view, this thesis focuses on the DL-based sequential recommender systems by taking the current limitations of existing methods into consideration. Specifically, we demonstrate the overview concept of sequential recommendation processes, present the related state-of-the-art algorithms, summarize the key factors affecting the performance of DL-based models, propose the novel DL-based for sequential recommendation tasks under complex settings, and conduct corresponding evaluations to show the effectiveness of our proposed models over the state-of-the-art methods. We finally conclude our thesis by systematically outlining current challenges, future directions and our contributions in this field. At last, we believe that our proposed project has high positive contributions to the existing sequence-aware recommendation works.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML62檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明