English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42716598      線上人數 : 1566
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86480


    題名: 用於工控系統非均衡網路流量資料之降噪自動編碼器極限梯度提升異常的偵測與分類;Anomaly Detection and Classification Based on Denoising Autoencoder and XGBoost for Imbalanced Network Traffic Data in Industrial Control Systems
    作者: 陳沿廷;Chen, Yan-Ting
    貢獻者: 資訊工程學系
    關鍵詞: 異常分類;異常偵測;自動編碼器;資料不平衡;F1-分數;工業控制系統;精確度;召回率;極限梯度提升;Anomaly Classification;Anomaly Detection;Autoencoder;Data Imbalance;F1-score;Industrial Control System;Precision;Recall;XGBoost
    日期: 2021-07-16
    上傳時間: 2021-12-07 12:53:21 (UTC+8)
    出版者: 國立中央大學
    摘要: 工控系統(Industrial Control System, ICS)整合資訊技術(Information Technology, IT)與運營技術(Operational Technology, OT),是近年工業領域熱門的研究主題。 ICS 廣泛應用於控制與管理透過網路聯結的重要機器設備,若 ICS 遭受來源不明的網路攻擊,可能導致設備運作異常,因而造成巨大經濟損失甚至於影響人員的安危。因此,針對ICS 網路安全的研究是關鍵且必要的。
    本篇論文提出一個關於ICS 網路安全的異常偵測與分類方法,用以偵測使用工業傳輸協定 Modbus 與 S7 Comm (S7 Communication) 的網路流量資料 (network traffic data)是否異常,並對異常資料進行分類。本論文提出的方法包含三項主要步驟,以最大化異常偵測與分類效果。首先,使用降噪自動編碼器 (Denoising Autoencoder, DAE) 去除資料中潛在的雜訊。其次,面對含有異常行為的不平衡(imbalanced)資料,採用SMOTE (Synthetic Minority Oversampling Technique) 與 Tomek link (T-Link) 結合的資料過採樣(oversampling)與欠採樣(undersampling)方法,用以增加特定樣本的特徵代表性。最後使用極限梯度提升(eXtreme Gradient Boosting, XGBoost)建立異常偵測與分類模型。
    本篇論文採用真實鐵路工業ICS的Electra資料集,用以評估所提方法的效能並和其他相關方法進行比較。實驗結果顯示,本篇論文提出的異常偵測與分類的方法,相較於其他異常偵測方法有較佳的精確度 (precision)、召回率 (recall) 與 F1-score 。
    ;The industrial control system (ICS), which integrates information technology (IT) and operational technology (OT), is a hot research topic in the industrial field in recent years. ICS is widely used to control and manage important machines and devices connected through networks. If the ICS suffers from network attacks, machines and devices may work abnormally, causing huge economic losses and even affecting the safety of personnel. Therefore, research on ICS network security is critical and necessary.
    This thesis proposes an anomaly detection and classification method for ICS network security to detect and classify abnormalities in network traffic data of industrial field protocols like Modbus and S7 Communication (S7 Comm). The proposed method contains three major steps, as shown below. First, it uses the denoising autoencoder (DAE) to remove potential noise in data. Second, in face of imbalanced data of abnormalities, the synthetic minority oversampling technique (SMOTE) and the Tomek link (T-Link) mechanism are used to oversample and undersample data to increase representative characteristics of particular samples. Finally, extreme gradient boosting (XGBoost) is used to build anomaly detection and classification models.
    The real-life railway industry ICS dataset Electra is used to evaluate the effectiveness of the proposed method. The evaluation results are compared with those of other related methods. The proposed method is shown to have better precision, recall and F1-score than others in terms of both anomaly detection and anomaly classification.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML54檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明