English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42685747      線上人數 : 1406
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86558


    題名: 以機器學習建構股價預測模型:以台灣股市為例;Constructing stock price forecast models with machine learning:Evidence from Taiwan Stock Market
    作者: 王希佩;Wang, Hsi-Pei
    貢獻者: 資訊管理學系在職專班
    關鍵詞: 機器學習;股價預測;單純貝氏分類器;人工神經網路;邏輯式迴歸
    日期: 2021-07-21
    上傳時間: 2021-12-07 12:58:16 (UTC+8)
    出版者: 國立中央大學
    摘要: 投資一直是現代社會關注的議題,常見投資市場包含了銀行定存、外幣買賣、儲蓄險、基金、債?、虛擬貨幣及股票,因為投資理財資訊越來越容易取得,使得更多人們透過理財提早規劃自己退休生活,讓自己達到財富自由,其中股票更是投資者投入最普遍的標的之一,大眾常在財經節目中聽取建議,找尋投資目標,但在下單的時間點,往往已經錯失投資的黃金機會,而導致血本無歸或是套牢在股海裡。
    近年來隨著科技的進步,市面上開發出人工智慧新穎的投資工具,提供投資人使用,但往往建議投資人投資的股票,有時會因為證?公司的私利,而提供投資者不是那麼公正的投資標的;故本研究利用公司股價(開盤價、最高價、最低價及收盤價)、基本面、技術面及籌碼面作為輸入變數,並以機器學習方法建立股市漲跌預測模型,如K-近鄰演算法 (k-nearest neighbors, kNN)、決策樹 (decision tree, DT)、支援向量機 (support vector machine, SVM)、隨機梯度下降法 (Stochastic gradient descent, SGD)、隨機森林 (Random Forest, RF)、人工神經網路 (Artificial Neural Network, ANN)、單純貝氏分類器 (Navie Bayes, NB)、邏輯式迴歸 (Logistic Regression, LGR)及AdaBoost (Adaptive Boosting)等工具,實驗結果整體表現以單純貝氏分類器最佳。;Investment has always been a topic of concern in modern society. Common investment markets include bank deposits, foreign currency trading, savings insurance, funds, bonds, virtual currencies, and stocks. Because investment and financial information becomes more and more accessible, many financial management tools have been developed. With the use of these tools, people can plan their retirement life and realize the freedom of wealth eariler. Investing in stocks is the most common for many investors. People often listen to financial suggestions and tips via audiovisual programs. However, at the time of placing an order, they often miss the critical time for investment, which leads to loss of money or being stuck in the stock market.
    In recent years, with the advancement of science and technology, new investment tools with artificial intelligence techniques have been developed for investors to use, but stocks that investors are often recommended to invest in are sometimes not so fair to investors because of the private interests of securities companies. Therefore, this research uses the company’s stock price (e.g., opening price, highest price, lowest price and closing price), fundamental analysis, technical analysis, and chip analysis as input variables. The sample of this study uses the Taiwan Economic Journal Database. A number of machine learning methods have been used to build stock price prediction models, including K-nearest neighbor (kNN), decision tree (DT), support vector machine (SVM), stochastic gradient descent (SGD), random forest (RF), artificial neural network (ANN), navie Bayes (NB), logistic regression (LGR), adaptive boosting (AdaBoost). The best results of the experimental is navie Bayes have the great prediction.
    顯示於類別:[資訊管理學系碩士在職專班 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML101檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明