中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/86845
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42728341      在线人数 : 1438
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86845


    题名: 基於遞迴式小波模糊類神經控制策略之智慧型變流器設計;Design of a Smart Inverter Based on Recurrent Wavelet Fuzzy Neural Network Control Strategy
    作者: 陳柏愷;Chen, Bo-Kai
    贡献者: 電機工程學系
    关键词: 微電網;主從控制;小波;遞迴式;模糊類神經;Microgrid;Master-slave control;Wavelet;Recursive equation;Fuzzy Neural Network
    日期: 2021-09-23
    上传时间: 2021-12-07 13:19:43 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文旨在改善微電網在併網模式時因負載變化而造成的實虛 功控制暫態響應,以及當市電端發生異常轉為孤島模式時,而造成的 電壓擾動的暫態響應,因此使用一具有模糊推理機制和線上學習能力 的 遞迴式小波 模糊類神經網路 (Recurrent Wavelet Fuzzy Neural Network, RWFNN)及來取代傳統比例積分(Proportional Integral, PI)控 制器,來改善暫態響應,達到更好的控制效果,該網路經常被應用在 處理具有非線性和不確定性的控制系統。
    本文使用MATLAB R2017a/Simulink來建置一微電網之架構且分 別操作於併網模式與孤島模式來模擬,驗證 PI 與 FNN 及本文所使用 之 RWFNN 的演算法之可行性。實驗方面,將各演算法寫入德州儀器(Texas Instruments, TI)公司的 DSP TMS320F28335 微控制器中,再使 用 Opal-RT 所建立的硬體迴圈(Hardware-in-the-loop, HIL)作為架構, 驗證本文所提演算法及跟其他演算法相比之差異。;This paper dedicated to improve the transient response of the real and
    reactive power control at grid-connected mode in the microgrid and the
    voltage disturbance caused by the load change at islanding mode .
    Therefore, a Recurrent Wavelet Fuzzy Neural Network (RWFNN)
    with fuzzy inference mechanism and online learning capabilities is used to
    replace the traditional Proportional Integral (PI) controller to improve
    transient response . However, to achieve better control effect, the network
    is often used to deal with non-linear and uncertain control systems.
    This article uses MATLAB R2017a/Simulink to build a microgrid
    architecture and operates in grid-connected mode and island mode
    respectively to simulate the feasibility of PI and FNN and the RWFNN
    algorithm used in this article. In terms of experiments, each algorithm is
    implented on DSP TMS320F28335 microcontroller of Texas Instruments
    (Texas Instruments, TI), and then the hardware-in-the-loop (HIL)
    established by Opal-RT is used as architecture, verify the algorithm
    proposed in this article and its differences compared with others.
    显示于类别:[電機工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML54检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明