English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42650598      線上人數 : 1196
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/87017


    題名: 利用有限元素法求解二維完全展開流通過障礙物
    作者: 楊青晃;Yang, Ching-Huang
    貢獻者: 機械工程學系
    關鍵詞: 有限元素法;二維完全展開流;納維爾-斯托克斯方程式
    日期: 2021-10-08
    上傳時間: 2021-12-07 13:44:43 (UTC+8)
    出版者: 國立中央大學
    摘要: 納維爾-斯托克斯方程式一直是探討流場問題時重要的統御方程式,藉由此方程式,我們可以探討在不同幾何形狀、流動速度、流體密度及流體黏滯係數下,流場的流動行為。而科學家們在求解此方程式時,經常會利用到有限元素法(Finite element method, FEM)、有限體積法(Finite volume method, FVM)、有限差分法(Finite difference method, FDM)……等方法。上述的方法各有優缺點,但有限元素法對幾何邊界的自由性是其餘方法無法比擬的。吾人考慮到往後欲求解複雜幾何形狀的流場,故本研究將使用有限元素法來求解納維爾-斯托克斯方程式。
    在空間的離散上,吾人將利用有限元素法對統御方程式進行離散,但在該方法中仍存在不同階數的離散手法,吾人欲使系統穩定,故本研究將採用P2-P1泰勒-胡德(Taylor-Hood)有限元素法[1],以錯開流場中的速度及壓力。在時間的離散上,吾人將採用隱式的尤拉法(Implicit Euler method)。接著,吾人將搭配合適的初始條件(Initial condition)及邊界條件(Boundary condition),並透過自行撰寫的程式以獲得流場的流動行為、阻力係數(Drag coefficient)、升力係數(Lift coefficient)及壓力差(Pressure difference)。最後,吾人將透過與各個文獻比較模擬數據,以驗證本研究的可靠性及準確性。
    最終的模擬結果顯示,在雷諾數為100的流動中,本研究所獲得之阻力係數、升力係數及壓力差皆與文獻相近。同時,吾人亦找出本研究方法對雷諾數的限制為400,若欲求流場之雷諾數高於此數值,則該流場將不適用本研究方法。
    ;The Navier-Stokes equations have always been a crucial governing equation for the analysis of flow distribution. We can explore the flow behavior of the flow field under different geometry shape, flow rate, fluid density, and fluid viscosity. In practical use, as the complexity of the involved situation increases, the solving difficulties rises. To deal with these equations properly, scientists take advantages of finite element method, finite volume method, finite difference method, and etc. to solve these equations. Each method has its pros and cons, and we should choose the one that best suits the problem needs and situations. In this research, given that we inclined to compute the flow field across complex geometric shapes, we decide to utilize FEM to solve Navier-Stokes equations since the FEM has very low restrictions on the geometric boundary, which is incomparable to any other method.
    To solve the equations with the use of FEM, we must obtain spatial discretization to the governing equations. We need to choose the most suitable method for this study among various different order discretization schemes. To ensure the system’s stability, we adapt P2-P1 Taylor -Hood finite element method [1]to stagger velocity and pressure of the flow field. And in terms of time discretization, we employ implicit Euler method. Furthermore, we introduce appropriate initial conditions and boundary conditions, and obtain the flow behavior, drag coefficient, lift coefficient and pressure difference through our hand craft code. Lastly, the simulated data will be compared with various literatures to verify the reliability and accuracy of this research.
    The final results indicate that the calculated drag coefficient, lift coefficient and pressure difference are similar to the results of the literatures when the flow has a Reynolds number equals 100. Meanwhile, we have discovered that this study has a limitation on Reynolds number over 400. If you want to solve the flow field with Reynolds number higher than the restriction, this research method will not be suitable for this situation.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML117檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明