中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/88525
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43452235      Online Users : 1224
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/88525


    Title: 基於卷積遞迴神經網路之構音異常評估技術;Automatic Evaluation of Articulation Disorders Based on Convolutional Recurrent Neural Network
    Authors: 楊東翰;Yang, Dong-Han
    Contributors: 通訊工程學系
    Keywords: 深度學習;語音辨識;構音異常;卷積遞迴神經網路;錯誤發音檢測與診斷;Deep Learning;Automatic Speech Recognition;Articulation Disorders;Convolutional Recurrent Neural Network;Mispronunciation Detection and Diagnosis
    Date: 2022-01-25
    Issue Date: 2022-07-14 13:52:31 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近年來隨著資訊科技化,人工智慧逐漸深入了我們的生活。深度學習的發展更讓語音辨識技術向前邁進了一大步,不僅能提高人機交互性,還可以應用於醫療等方面。我們用基於深度學習的語音識別技術進行錯誤發音的檢測,以此幫助有構音異常的人找出發音錯誤的地方以增加口說熟練度,並且輔助醫師進行診斷與治療。
    本論文「基於卷積遞迴神經網路之構音異常評估技術」,延續過去學者的研究,提出基於CRNN-CTC 改善的系統,來提升錯誤發音檢測 (Mispronunciation Detection, MD) 的效果,達到構音異常的評估。本研究利用卷積遞迴神經網路 (Convolutional Recurrent Neural Network, CRNN) 與連結時序分類 (Connectionist Temporal Classification, CTC) 來訓練網路模型。並加入注意力機制,對構音異常評估的性能進行改善,以提升評估效果。實驗結果表明該方法用於構音異常的檢測有著良好效果。
    ;In recent years, with the advancement of Information Technology, artificial intelligence has gradually penetrated into our lives. The development of deep learning has made speech recognition technology a big step forward, not only can improve human-computer interaction, but also can be applied to medical treatment and other aspects.
    In this paper, continuing the research of past scholars, we propose a system which is based on improved CRNN-CTC algorithm that can improve the effect of mispronunciation detection and achieve the evaluation of Articulation Dis-orders. We use Convolutional Recurrent Neural Network (CRNN) and Con-nectionist Temporal Classification (CTC) with attention model to train the model. The experimental results show that this method has a good effect in the auto-matic evaluation of abnormal articulation.
    Appears in Collections:[Graduate Institute of Communication Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML73View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明