本論文針對同步磁阻馬達,利用靈敏度(sensitivity)的觀念,提出轉矩響應的分析;以及設計兩個新型的可變結構控制器,用在同步磁阻馬達的位置與速度控制上,提昇同步磁阻馬達驅動系統之性能。 對於同步磁阻馬達,常用的轉矩控制模式有四種,這些方法的分析主要是針對無轉子繞組所做。在控制上,當暫態發生時,定子旋轉磁場與轉子事實上是不同步的。本文首先利用轉矩靈敏度,分析具有轉子繞組的同步磁阻馬達的轉矩暫態響應。並利用常用的兩個轉矩控制方法,最大轉矩控制(MTC)與固定d軸電流控制(CCIAC)來探討分析的正確性。 接著,吾人將可變結構系統(Variable Structure System, VSS)結合狀態回授控制,設計一個新型狀態回授控制器,稱之為“全不變性可變結構控制器(totally invariant variable structure controller)”。一般的可變結構控制系統存在著到達相(reaching phase)與滑動相(sliding phase),而當系統狀態在到達相時,其性能並非全然的可以加以掌握。而本文所提出的全不變性可變結構控制器僅存在著滑動相,也即系統在控制的起始就在滑動相上。因此,系統的性能是可以全然掌握的。這一個控制器同時擁有:1)如狀態回授控制般容易設計的優點;2)具有如可變結構系統般的強健性(robustness)功能。吾人將這一個控制器用在同步磁阻馬達的位置控制上,探討驗證其實際性能;並且將之應用在最佳控制的設計上,以與傳統LQ法做個比較,以彰顯其強健性。 緊接著,吾人利用滑動模式控制(sliding mode control)的概念,設計一個增量型馬達運動控制器(incremental motion controller)。這一個控制器根據一個預先所定義的馬達運動梯形軌跡(trapezoidal profile),利用四個切換面(switching surface)做控制,分別可以得到所需的加速度、定速度、減速度與定位控制性能。這一個控制器系統也具有可變結構控制強健性的優點,而且也免除了到達相,直接就進入滑動相。這一個運動控制器也利用同步磁阻馬達來做分析與驗證。 最後,本文所有的分析模擬皆在Simnon軟體底下完成,而所有的實作驗證,皆以PC系統為架構,以x86組合語言程式搭配x87數學運算處理器指令來實現控制法則。 This dissertation analyzes the torque sensitivity and proposes high performance position and speed control methods of synchronous reluctance motors (SynRM). Four torque control methods, based on different objects such as maximizing the torque/ampere ratio and the power factor, are generally used for a cageless SynRM. However, the torque production of a SynRM with cage rotor is not the same as that of a cageless SynRM. The difference between them is the transient torque, which exists in the cage rotor when it is not synchronous with the stator flux. This dissertation firstly analyzes the transient torque through the sensitivity function. Secondly, a new totally invariant state feedback controller is proposed to enhance the robustness of SynRM drive systems by combining the classical state feedback controller and the variable structure control (VSC). The combination of these two different control methods has both their merits: a) the easy design of the state feedback and b) the strong robustness of the VSC. In other words, the system performance can be directly designed for the nominal system by using the well-known classical state feedback, such as the pole placement or the linear quadratic method. Then, VSC is used to ensure the control effect. To demonstrate the effectiveness of totally invariant state feedback controller, it is applied to the position control of a SynRM. Also, totally invariant state feedback is applied to optimal control problem to guarantee the performance designed by LQ method. Moreover, this dissertation proposes multi-segment sliding mode control to solve a particular incremental motion control problem specified by a trapezoidal velocity profile. Each segment of the multi-segment switching surfaces is designed to match the corresponding part of the trapezoidal velocity profile, so that the motor dynamics on the specified-segment switching surface have the desired velocity or acceleration corresponding to the trapezoidal profile. The synchronous reluctance motor system is used to demonstrate the effectiveness of the multi-segment sliding mode control. Finally, a PC-based experimental SynRM system is built to demonstrate all the proposed algorithms.