中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/88825
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42700029      在线人数 : 1472
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/88825


    题名: 深度學習技術輔助多種重要農作物之遙測影像判釋模組開發計畫;The development for aerial images of multiple crops interpretation modules based on deep learning technology
    作者: 國立中央大學資訊工程學系
    贡献者: 國立中央大學資訊工程學系
    关键词: 卷積神經網路;農作物辨識;影像分割;航攝影像;深度學習;Convolutional Neural Networks;Crop Recognition;Image Segmentation;Aerial Photograph Images;Deep Learning
    日期: 2022-07-26
    上传时间: 2022-07-27 11:32:19 (UTC+8)
    出版者: 行政院農業委員會
    摘要: <P>深度學習技術可用於自動判釋航空照片中的資訊,例如用辨別農田裡的農作物。儘管它們是個前瞻性技術,但在農田分割或高精準標註資料等仍然具有挑戰。因此本提案提出三個針對不同對象的自動分割和標記問題,第一 ,我們將使用校準航照圖像來建立水稻語義分割模型。其次,我們將開發每個地區不同季節的區域作物判釋模型。第三,提出偵測坵塊異動情形的機器學習方法。今年將繼續使用 2021 年研究的模型繼續優化,來提高性能以解決目標 1 和 2。另一方面,目標 3 是我們今年要解決的新課題。在分割和標記模型開發完成之後,我們將使用航照圖來評估所提出模型的效率是否達到我們訂定的目標。。</P> ;<P>Deep learning technologies can be used to automatically interpret aerial photographs, such as labeling agricultural fields with their types. Even though they are promising technologies, high accuracy in segmenting and labeling agricultural fields remains challenging. This proposal focuses on the issue of automatic segmentation and labeling. There are three research goals in this proposal. First, we will use calibrated aerial images for building rice semantic segmentation models. Second, we will develop regional crop interpretation models for different crops in different seasons in each region. Third, find the machine learning methods for parcel classification. In this year, the model from 2021 research will be used and we will still improve the performance to solve goals 1 and 2. On the other hand, goal 3 is the new topic we want to solve for this year. After the development of the segmentation and labeling models, we will use aerial photographs to evaluate the efficiency of the proposed models.</P>
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    显示于类别:[資訊工程學系] 研究計畫

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML96检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明