中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89101
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 43455778      在线人数 : 1223
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89101


    题名: 以設備振動資料偵測設備健康狀況-以A公司為例
    作者: 范佐宇;Fan, Zuo-Yu
    贡献者: 工業管理研究所在職專班
    关键词: 振動;故障診斷與偵測;設備維護
    日期: 2022-08-10
    上传时间: 2022-10-04 10:51:35 (UTC+8)
    出版者: 國立中央大學
    摘要: 本文以一個設備工程師對於想掌握自身機台健康狀況的角度為出發點,以機台振動的資料提前了解機台狀態以進行有效的維護保養作為、提早安排保養排程及內容,以致對產能、良率及保養效率的提升。
    由於許多生產工廠已生產多年,面臨到零部件以屆運轉壽命,生產機台無預警故障停機的情況常常發生。本文以A公司傳送設備為例,利用振動原理及設備上加裝的感測器蒐集資料建立決策樹及羅吉斯迴歸模型,再以此兩模型的結果及比較,藉此找出在機台發生故障或異常的預兆;本文案例指出預測設備健康的其中兩個模型(clean及adjust)都認為Z軸方向的振動為關鍵的因子,模型準確率分別83.55%及96.45%,建議A公司在此關鍵因子出現時進行清潔、調整,減少人員花費進行日巡檢的時間,並可即時監測設備狀況。
    ;The article takes an equipment engineer′s perspective on wanting to grasp the health status of his own machine as the starting point, and uses the vibration data of the machine to understand the state of the machine in advance to carry out effective maintenance, and arrange the maintenance schedule and content in advance, so as to improve the production capacity, yield and maintenance efficiency.
    Because many production plants have been producing for many years and face the end of the operating life of parts, it is often the case that the production machines are shut down without warning of failure. This paper takes the transmission equipment of company A as an example, uses the vibration principle and the sensors installed on the equipment to collect data to establish a decision tree and a Logistic regression model, and then compare the results of the two models to find out the difference between the machine. The omen of failure or abnormality; The examples in this paper point out that two of the models that predict device health (clean and adjust) consider the vibration of Z-axis as the key factor. The model accuracy of 83.55% and 96.45% respectively, it is recommended that equipment engineers of Company A could clean and adjust the machines when these key factors appears, reduce the time spent on daily inspection, and can monitor the equipment status in real time.
    显示于类别:[工業管理研究所碩士在職專班 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML111检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明