中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89274
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42712367      線上人數 : 1410
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89274


    題名: 融合影像與加速度感測訊號的人體上部運動特徵視覺化之機械學習模型;Machine Learning Models for Visualization of Upper Limb Motion of Human Bodies Using Features of Image Fusion and Acceleration Sensing Signals
    作者: 許雅淩;XU, YA-LING
    貢獻者: 生物醫學工程研究所
    關鍵詞: 機械學習建模;人體運動特徵視覺化
    日期: 2022-07-06
    上傳時間: 2022-10-04 11:08:32 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究主要目的為開發上肢部分動作分析之機械學習數學模型。此動作分析方法是用於解析使用者在進行各項動作時的上部身體姿勢,旨在消除多餘動作及矯正錯誤姿勢,來達到減輕疲勞、避免受傷及身體復健的功效,可用於醫療保健及身體康復。而除了探討臨床議題外,精細動作分析亦為當下運動科學研究之主要範疇。藉由量測、紀錄並分析解構特定運動動作特徵,提供其動作連動性、肌肉使用順序、旋轉角度以及施力狀態等資訊給予教練以及醫生對運動員狀況進行評估。提供運動員各種最適當化的各項肌肉與骨頭之操作指標,以期避免運動傷害並在不傷害身體之前提下增強其運動表現。目前在運動科學中的動作分析研究主要是使用光學動作捕捉系統及最近開始盛行的可穿戴慣性測量單元(Inertial measurement unit,IMU)完成。但上述技術所使用的設備都較為昂貴,且光學動作捕捉系統還需在專門的實驗室環境中操作。因此本研究之主要研究架構建立於降低科學動作分析的設備成本及使用者操作位置與運動範圍限制的需求上。本研究方法主旨在於完成即時性的人體上部運動分析,其中僅使用三個加速度感測器及兩台攝影機完成。架構上使用加速度感測系統偵測人體肩肘的移動及轉動軌跡,同時兩台視野正交的攝影機會捕捉人體特定定位點之動作。而我們發展出利用非線性迴歸模型,先分別將攝影機捕捉的影像動作以及加速度感測數據分別建模。爾後將加速度模型映射至影像模型空間中,以獲得加速度模型與影像模型之同構關係。最後利用特定定位點的物理長度來校正影像空間中的像素距離,因此便可以獲得加速度數據點之間的物理長度關係。因此運用本研究當中的機械學習提供之身體上部分運動模型,可以讓醫生判斷患者的肌肉及骨骼狀況,也可用於提供治療師作為是否為正確的運動姿勢的依據。;The main purpose of this research is to develop a machine learning mathematical model for the analysis of upper limb movements. This action analysis method is used to analyze the upper body posture of the user when performing various actions. It aims to eliminate redundant actions and correct wrong postures to achieve the effect of reducing fatigue, avoiding injury, and physical rehabilitation. It can be used in medical care and physical recovery. In addition to discussing clinical issues, fine motor analysis is also a major area of current sports science research. Measuring, recording, analyzing, and deconstructing the characteristics of specific sports movements, provides information such as movement linkage, muscle use sequence, rotation angle, and state of exertion for coaches and doctors to evaluate the athletes′ condition. Athletes can be provided with the most appropriate operating indicators of various muscles and bones to help them avoid sports injuries and enhance their performance within the physiological endurance. At present, motion analysis research in sports science is mainly done using optical motion capture systems and the recently popular wearable inertial measurement unit (IMU). However, the equipment used in the above techniques is relatively expensive, and the optical motion capture system also needs to be operated in a specialized laboratory environment. Therefore, the main research framework of this study is based on the need to reduce the equipment cost of scientific motion analysis and for ameliorating the limitation of the user′s operating position and range of motion. The main purpose of this research method is to perform real-time upper body motion analysis using only three accelerometers and two cameras. The acceleration sensing system is used to detect the movement and rotation trajectory of the human shoulder and elbow, and at the same time, two cameras with orthogonal fields of view will capture the movement of the specific positioning point of the human body. We developed a nonlinear regression model to model the image motion captured by the camera and the acceleration sensing data separately. Then, the acceleration model is mapped into the image model space to obtain the isomorphic relationship between the acceleration model and the image model. Finally, the pixel distance in the image space is corrected by the physical length of the specific positioning point, so the physical length relationship between the acceleration data points can be obtained. Therefore, the motion model of the upper body provided by the machine learning in this study can allow doctors to judge the patient′s muscle and bone condition, and can also be used to provide therapists with a basis for correct exercise posture.
    顯示於類別:[生物醫學工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML57檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明