敗血症是患者感染所引起全身性發炎的嚴重疾病,在重症加護病房是常見的死亡原因,隨著病程的發展,病患生理功能會逐漸受到損害而無法維持正常機能,最後演變成死亡,而不同敗血病患者的治療對於醫療措施會有不同的反應。目前敗血症在臨床上沒有普遍認可的治療方針與指引,治療敗血症患者是富有挑戰性的課題,所以了解患者在特定時間的生理狀態可能是製定有效治療政策的關鍵。現今深度強化學習的應用廣大,可以藉由電腦來執行人類智慧的判斷過程,用來輔助人類執行困難的工作。在我們的研究當中,提出了一種能夠推斷最佳敗血症治療的策略,係利用深度強化學習的方法,為敗血症患者的治療制定具有參考價值的醫療政策,學習到的治療政策可用於幫助重症加護病房的臨床醫生做出醫療決策並提高患者生存的可能性。我們發現與臨床醫師的決策相比,模型政策略優於臨床醫師的決策,且符合臨床醫師實際執行的政策特性分布,可用於為臨床醫生提供敗血症治療決策的輔助支持,協助醫師執行醫療策略。;Sepsis is a fatal condition of systemic inflammation caused by infection of patients. Sepsis is prevalent a prevalent bring of death in the intensive care units (ICU), costing a hospital jillion. With the development of the sepsis disease, patients’ physiological functions will be gradually damaged, and they can not maintain normal functions well. Treatment of sepsis patients will respond diversely to clinical standards. Currently, there are no generally accepted treatment guidelines for sepsis patients, and treating patients with sepsis can be very challenging. Understanding a sepsis patient’s conditions and physiological state at a specific time may explain developing a worthwhile treatment policy. In our study, we proposed a strategy capable of inferring optimal treatment for sepsis patients, using a deep reinforcement learning method to create a reference medical policy for sepsis patients, and the learned treatment policy can be used to help clinicians in intensive care units make medical decisions and improve the likelihood of patient survival. Deep reinforcement learning is widely used in the medical field, and the algorithm can perform the judgment process of human intelligence to assist humans in performing complex tasks. Our policy is slightly better than the clinician′s policy compared to the clinician′s approach and our study. Finally, our policy conforms to the policy characteristic distribution implemented by the clinician, which can be used to provide the clinician with additional support for sepsis treatment and assist physicians in medical strategies.