English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43370621      線上人數 : 1348
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89649


    題名: 以對比學習輔助之影像去模糊;Contrastive Learning Aided Image Deblurring
    作者: 詹豐鎧;Jan, Feng-Kai
    貢獻者: 通訊工程學系
    關鍵詞: 影像去模糊;對比學習;對比損失函數;漸進式負樣本生成器;推論時間;image deblurring;contrastive learning;contrastive loss;progressive negative samples generator;inference time
    日期: 2022-07-15
    上傳時間: 2022-10-04 11:50:53 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來,基於深度學習(deep learning)之圖像處理任務是百花齊放,其中,影像品質的好壞,會影響電腦視覺應用的效能,而有效且快速的影像去模糊方案,除了能改善影像觀賞品質,還能結合其他影像處理任務之模型或應用於邊緣裝置。目前的影像去模糊模型,在訓練網路時,幾乎只採用去模糊影像與清晰影像的資訊計算損失,以更新網路參數,然而,影像去模糊是一項不適定性(ill-posed)的任務,故如何妥善利用模糊的資訊,以減少網路輸出的解空間,為一項提升輸出影像品質的關鍵。因此,本論文提出以對比學習(contrastive learning)輔助之影像去模糊方案,首先,利用清晰影像與去模糊影像的資訊做為正樣本以及錨點的資訊,並為了改善以往使用對比學習輔助影像回復的模型,在不更動樣本的情形下,可能讓對比學習無法繼續訓練的問題,將模糊影像透過所提之漸進式負樣本生成器產生負樣本,根據訓練的時期(epoch)區間,逐步提升負樣本的清晰度以增加其多樣性,最後使用所提之對比損失,輔助去模糊網路的參數更新。實驗結果顯示,本論文所提方案在GoPro資料集的表現上,能在相同的計算複雜度以及網路參數下,相較於MIMO-UNet提升峰值訊噪比(peak signal-to-noise ratio, PSNR) 0.12 dB。;Deep learning based image processing tasks are flourishing in recent years. Since the quality of an image affects the performance of computer vision applications. An effective and fast image deblurring scheme not only can improve the viewing experience but also can be combined with models from other image processing tasks on edge devices. The existing image deblurring models almost only uses the information of the deblurred image and the sharp image to calculate the loss to update the network at the training stage. In particular, image deblurring is an ill-posed task, so the proper usage of the blurred information to reduce the solution space of the network is key to improving the quality of the output image. Thus, this thesis proposes a contrastive learning aided image deblurring scheme. Firstly, clear images and deblurred images are taken as positive samples and anchor, respectively. It aims to improve the previous contrastive learning aided image restoration models that cannot continue to be trained without changing the samples. Secondly, the proposed scheme generates the negative samples by the proposed progressive negative samples generator. It gradually improves the sharpness of negative samples to increase their diversity over epochs at the training stage. Thirdly, the proposed contrastive loss is used to assist in the parameter update of the deblurring network. Experimental results on GoPro dataset show that the proposed scheme can improve the peak signal-to-noise ratio (PSNR) of MIMO-UNet by 0.12 dB for the same computational complexity and network parameters.
    顯示於類別:[通訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML72檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明