English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43370725      線上人數 : 1372
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89652


    題名: 適用於車用偵測系統之高性能 FMCW 雷達研究;Effective FMCW Radar in Automotive Detection System
    作者: 劉芷妍;Liu, Chih-Yen
    貢獻者: 通訊工程學系
    關鍵詞: FMCW 雷達;車用感測器;自動駕駛;FMCW Radar;Automotive Detection;self-driving automobiles
    日期: 2022-07-19
    上傳時間: 2022-10-04 11:51:08 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來,隨著自動駕駛越來越興盛,在汽車中可以找到各種感測器,像是聲納、影像、光達和雷達系統。這些感測器可以用來輔助駕駛,精確測量汽車前方、旁邊或後方物體的距離和相對速度,使駕駛在能見度差時或物體隱藏在盲點時,能得知物體的位置。如果感測器不能準確探測到目標,就會對駕駛員的安全構成嚴重威脅。相較於其他感測器,雷達具有不易受環境影響、量測距離長且精準的優勢。在汽車雷達中,調頻連續波(FMCW)雷達被廣泛使用,因為與脈衝雷達相比,其可降低訊號處理的硬體複雜度。然而實務上存在由干擾效應和反射損耗等引起的系統誤差,且這些誤差有可能被誤認為是所需訊號。如何有效的抑制雜訊以及如何準確判斷物體位置將是本篇論文探討的重點,首先考慮了線性回歸的方法將雜訊與訊號區隔並利用深層神經網路將物體定位。;With self-driving automobiles becoming more and more popular in recent years, various sensors could be found in cars such as Sonar, Vision, Lidar, and Radar Systems. These sensors are used to assist drivers. Exact measurement of distance and relative velocity of objects in front, besides, or behind the car allow the driver to perceive objects during bad visibility or objects hidden in the blind spot. If sensors do not accurately detect targets, it can pose a serious threat to driver’s safety. Compared with other sensors, radar has the advantages of not being easily affected by the environment, and being capable of measuring longer distances precisely. For automotive radar systems, Frequency Modulation Continuous Wave (FMCW) radar is generally utilized because the complexity of hardware in the signal processing part can be reduced, compared to that of pulse radar. However, there are interference effects, reflection loss and some system errors in the practical application, which could be mistaken for desired signals. How to reduce the noise and accurately position the object will be the focus of this paper. First, the linear regression method is used to distinguish the noise and the signal, and the deep neural network is used to locate the object.
    顯示於類別:[通訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML54檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明