中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89672
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 43434193      在线人数 : 1260
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89672


    题名: 使用對抗式圖形神經網路之物件偵測張榮;Adversarial Graph Neural Network for Deep learning Object Detection
    作者: 張融;Zhang, Rong
    贡献者: 通訊工程學系
    关键词: 圖形神經網路;物件偵測;對抗神經網路;Graph neural networks;Object Detection;Adversarial Neural Networks
    日期: 2022-08-04
    上传时间: 2022-10-04 11:51:58 (UTC+8)
    出版者: 國立中央大學
    摘要: 使用深度學習技術的物件偵測目前已取得階段性的成功。人工神經網路(Artificial Neural Networks, ANNs)與卷積神經網路(Convolutional Neural Networks, CNNs)等深度學習模型均被使用在此領域中。然而,傳統技術並無將物件之關聯性考慮其中。與之對比,圖形神經網路(Graph Neural Networks, GNNs)具有更適於計算關聯性之特性,及圖片中像素之間的關係。
    本論文提出的方法為以圖形神經網路(Graph Neural Networks, GNNs) 之深度學習模型,來實現物件偵測。圖形神經網路(Graph Neural Networks, GNNs)之優點在於其除了考慮隱藏特徵之外,也同時計算鄰接矩陣,及隱藏特徵之間關連性。圖形神經網路也能有效地保留與學習不同尺度之特徵,對於物件偵測時偵測不同大小之物件有巨大優勢,如: 特徵金字塔(Feature Pyramid Network, FPN)。基於以上,我們提出一基於圖形神經網路與特徵金字塔之深度學習模型。此模型利用圖形神經網路為生成器,特徵金字塔為鑑別器,從而獲得更好的物件偵測平均精準度(Average Precision, AP)。最終,提出之模型平均精準度達至50.1,並且在微軟場景中常見物件數據集(Microsoft Common Objects in Context, MS COCO)勝過其他模型。
    ;Object Detection using deep learning has achieved great success recently. Several deep learning architectures are used in this field, such as Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs). However, traditional neural networks are characterized by not including relationships between objects. In contrast, graph neural network has properties that are more suitable for them to compute adjacencies, which typically represent relationships between objects or pixels in an image. In this paper, we propose an GNN-based object detection model. Graph Neural Networks (GNNs) are considered to be an efficient framework for neural net for its node and edge learning. Graph Neural Networks (GNNs) can effectively preserve and learn multi-scale features generated by backbone, in our case, ResNet101. Furthermore, we also propose an adversarial model based on GNNs and Feature Pyramid Network (FPN). Using graph-autoencoder as generator and FPN as discriminator, we successfully improve the overall performance (50.1 AP) and outperform other GNNs based models on non-trivial dataset, MS COCO 2017.
    显示于类别:[通訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML42检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明