中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89814
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42696631      在线人数 : 1395
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89814


    题名: 遞回歸神經網路於電腦零組件銷售價格預測之研究
    作者: 陳嘉雄;Chen, Chia-Hsiung
    贡献者: 資訊管理學系在職專班
    关键词: 中央處理器 (CPU);價格預測;遞回歸神經網路;LSTM;GRU
    日期: 2022-07-04
    上传时间: 2022-10-04 12:00:50 (UTC+8)
    出版者: 國立中央大學
    摘要: 3C電子產品已經是現今人類密不可分的一項產品之一,然而在各廠家的產品價格的競爭,廠商的採購價格錙銖必較,而供應商如何有效的取得既有的毛利外,如何透過人工智慧的方式,預測出建議售價或數量級距的售價趨勢,是目前產業上的研究方向之一,本研究以供應商的角度,預測相關零組件的價格趨勢。
    台灣是工業電腦品牌廠商匯聚的一個區域,隸屬工業電腦範疇的上市櫃公司起碼30家以上,工業電腦應用範圍甚為廣泛,但生產規模不及一般商用電腦的數量龐大,在產品價格上一直維持以少量多樣變化,高毛利的準則,讓工業電腦廠商保持有充沛的盈餘。然而在工業電腦設備的最高單價零件,屬中央處理器(CPU),故在採購上就會有錙銖必較的現象,提升毛利率的重要指標之一。
    隨著COVID-19疫情爆發,首當其衝的運輸產業頓時進入了寒冬時期與工廠停工影響,導致在科技產業上的衝擊甚大。影響最前線的半導體產業,受停工規定與人員移動限制,產品出貨的短缺,整體供應鏈斷絕,導致市場上電子零組件現貨價格紛紛調漲。然而在工業電腦產業中,衝擊著少量多樣的生意型態。本研究主要針對CPU的市場商用(Desktop)現貨價格趨勢與工業用(Embedded) CPU現貨價格趨勢以運用長短記憶型類神經網路 (LSTM)和門控遞迴單元 GRU (Gated Recurrent Unit) 預測價格方法參考比較。進而分析LSTM模型和GRU模型在預測之準確度及LSTM和GRU模型之效益。其預測準確率作為供應商銷售的參考指標,爭取供應商該有的毛利。
    ;Abstract
    3C electronic products are already one of the inseparable products of today′s human beings. However, in the competition of product prices of various manufacturers, the purchase price of various manufacturers must be compared, and how suppliers can effectively obtain the existing gross profit, How to predict the price trend of the suggested selling price or the order of magnitude through artificial intelligence is one of the current research directions in the industry. This research predicts the price trend of related components from the perspective of suppliers.
    Taiwan is an area where industrial computer brand manufacturers gather. There are at least 30 listed cabinet companies in the industrial computer category. Industrial computers have a wide range of applications, but the production scale is not as large as that of general commercial computers. A small amount of diverse changes and the principle of high gross profit allow industrial computer manufacturers to maintain a sufficient surplus. However, the highest unit price in the industrial computer is the central processing unit (CPU), so there will be a phenomenon of paying for money in the purchase, which is one of the important indicators to improve the gross profit rate.
    This research mainly focuses on the spot price trend of commercial (Desktop) CPU and industrial (Embedded) CPU spot price trend in order to use long short-term memory type neural network (LSTM) and gated recurrent unit GRU (Gated Recurrent Unit) to predict the price. Method reference comparison. Then analyze the accuracy of LSTM model and GRU model in prediction and the benefit of LSTM and GRU model. Its forecast accuracy rate is used as a reference indicator for supplier sales, and strives for the gross profit that suppliers should have.
    显示于类别:[資訊管理學系碩士在職專班 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML53检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明