為了發展以數位訊號處理器為基礎之高性能同步磁阻馬達驅動器系統,本論文提出一種近似最大效率控制方法。首先先敘述以固定直軸電流命令來驅動同步磁阻馬達之傳統向量控制,然而固定電流命令不適合同步磁阻馬達之高效率應用。有鑑於此,為了改善同步磁阻馬達驅動系統的效率,本文提出了具有三種模式之控制系統,其中包括可調整之轉矩最大變化率控制、有限元素分析之每安培最大轉矩控制以及近似最大效率控制。另外,近似最大效率控制結合了可調整之轉矩最大變化率控制和有限元素分析之每安培最大轉矩控制,因此直軸電流命令可以靈活運用,並能根據使用者的最小化損失目標來做選擇,另一方面為了增加速度控制的強健性,提出了一種具有直軸電流調節之新型適應性計算交軸電流速度控制。最後,在32位元浮點運算數位處理器實施了所提出的三種模式控制系統,並利用Simplorer分析與實驗結果來驗證同步磁阻馬達驅動系統之有效性。;Abstract—To develop a high-performance synchronous reluctance motor (SynRM) drive system, a proximate maximum efficiency (PME) control is proposed in this thesis. First, a SynRM drive based on traditional vector control with a constant d-axis current command is described. Nevertheless, the constant command is not suitable for the high-efficiency applications of SynRM. Therefore, a three-control-mode system including the adjustable maximum rate of change of torque (AMRCT) control, finite element analysis (FEA)-type maximum torque per ampere (MTPA) control, and PME control is proposed to improve the efficiency of SynRM drive system. Moreover, the PME control is a combination of AMRCT control and FEA-type MTPA control. As a result, the d-axis current command is flexible and according to the minimizing loss target chosen by the end-user. Furthermore, a novel adaptive computed q-axis current speed control with d-axis current regulation is proposed to increase the robustness of the speed control. Finally, the proposed three-control-mode system is enforced in a 32-bit floating-point digital signal processor and some simulated and experimental results are provided to verify the effectiveness of the proposed SynRM drive system.