中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/90049
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42693509      Online Users : 1501
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/90049


    Title: 數值方法與類神經網路應用於內嵌介面問題;Numerical Methods and Neural Network for Immersed Interface Problem
    Authors: 劉懷丞;Liu, Huai-Cheng
    Contributors: 數學系
    Keywords: 數值分法;類神經網路;內嵌介面問題;Numerical Methods;Neural Network;Immersed Interface Problem
    Date: 2022-07-04
    Issue Date: 2022-10-04 12:09:08 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本篇論文會介紹數值分法和類神經網路兩種方式來對偏
    微分方程做數值分析。首先會以中央差分法先來做介紹,而
    這是一個能數值解微分方程的傳統方法。除此之外,也會討
    論針對不同類型的邊界條件所帶來的影響,分別為狄力克雷
    邊界條件和諾伊曼邊界條件。接下來會介紹沈浸介面法,是
    一個能處理任意維度介面問題的方法,但對於高維度問題時
    沈浸介面法會遇到困難。因此,我們會利用類神經網路的方
    法來嘗試能否解決此問題,且得到更好的準確度。針對介面
    問題,將會使用不連續捕獲淺層神經網路法來解決。最後,
    會針對連續與不連續偏的問題做降階法來看是否能得到更好
    的準確度。;This thesis starts by introducing the Finite Difference Method (FDM)[1]
    which is one of the classic numerical methods that can solve the partial
    differential equations (PDEs). Moreover, we discuss the effect different
    types of boundary conditions on the problems, including Dirichlet and
    Neumann boundary conditions. After that, we will tell the method that
    can solve the d -dimensional interface problem which is, Immersed Interface
    Method (IIM)[2, 3]. Although the IIM could easily solve the interface
    problem, it might be difficult to deal with the high-dimensional problem.
    Therefore, we tried to use the Neural Network (NN) [4] to see whether it
    is a good way to fix it and try to get better accuracy. For the interface
    problem, we used the Discontinuity Capturing Shallow Neural Network
    (DSCNN) [5]. At last, we use a method of reduction for the continuous
    and discontinuous problems to find out it is a way to obtain results better
    than before.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML95View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明