中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/90057
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42715795      在线人数 : 1416
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/90057


    题名: Detecting Driver Intention by Taillight Signals via Sequential Learning
    作者: 陳妍如;Chen, Yen-Ju
    贡献者: 資訊工程學系
    关键词: 車尾燈辨識;長時間序;taillight recognition;long sequence
    日期: 2022-09-28
    上传时间: 2022-10-04 12:09:38 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著深度學習技術的演進和發展,自動駕駛系統正快速發展。對於自動駕駛車輛而言,捕捉道路上其他車輛的駕駛意圖至關重要,其結果可以作為新的特徵用於軌跡預測以規劃安全的自動駕駛車輛駕駛軌跡。本研究提出了一種系統,可從尾燈信號的視頻流中識別其他車輛的駕駛意圖。為了實現這一目標,需要正確提取和識別尾燈的位置(即空間特徵)和尾燈狀態隨時間的變化(即時間特徵)。在我們的模型中,使用更長的 32 幀序列作為輸入來捕捉尾燈的完整變化。此外,採用遷移學習的經典卷積神經網絡和輕量級 WaveNet 分別提取輸入序列的空間和時間特徵。實驗結果表明,我們的系統在尾燈識別方面優於最先進的方法。;With the evolution and development of deep learning technologies, we have observed the rapid advancement of autonomous driving systems. For an autonomous driving vehicle, it is crucial to capture the driving intentions of other vehicles on the road, which can then be used for the autonomous driving vehicle to plan a safe driving route. This study proposes a system to identify the driving intention of other vehicles from the video streaming of their taillight signals. To achieve this goal, both the positions of taillights (i.e., spatial features) and the change of the status of taillights over time (i.e., temporal features) need to be properly extracted and recognized. In our system, a longer sequence of 32 frames is used as input to capture the complete change of taillights. In addition, a transfer-learned classical convolutional neural network and a light-weight WaveNet are adopted to extract spatial and temporal features of the input sequence, respectively.
    % A dataset of more than 800 sequences with different types of taillight signals is collected from different sources and carefully labelled. Moreover, the dataset is augmented to ensure the model training converge.
    The experiment results indicate that our system outperforms the state of the art approaches in taillight recognition.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML88检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明