根據報導與研究,我們可以發現許多聚乙二醇化的藥物廣泛地應用在臨床治 療,是因為 經 修飾後的藥物可以增加在體內的半衰期並降低細胞毒性。然而,在最 近的研究中發現,有些人體內已經產生抗聚乙二醇的抗體,抗體的存在降低了 聚乙 二醇化藥物的治療效果,並且在臨床報告中增加了過敏反應的風險。 而在有些研究 中發現,增加與聚乙二醇相關產品接觸的機會 ,會促進健康的人體產生抗 聚 乙二醇 的抗體 。在本研究 第一部份中, 選用 2-甲基丙烯醯氧基氧基乙基磷酸膽鹼 (MPC) 與 [2-(甲基丙烯酰氧基 )乙基 ]二甲基 -(3-磺丙基 )氨基甲酸銨 (SBMA)兩種單體 透 過 原子轉移自由基聚合 的方法 ,合成 具有 N-羥基琥珀酰亞胺 (NHS) 末端的兩性 離子聚合物 此 聚合物 需 有可以控制的分子量 與窄的分子量分佈 ,並利用此雙離子 高分子聚合物 接合牛血清蛋白 (Bovine serum albumin, BSA)。 研究第二部份中,使 用小鼠作為動物實驗對象,注射藥品後,測量其體內血清中抗 BSA抗體濃度變化, 以推估 蛋白質經 雙離子高分子聚合物 (pMPC, pSBMA) 這類材料 接合後 能否比 只有 BSA注射時,有更好的體內半衰期,延長蛋白質在體內存留時間。 經由實驗結果證明了 相較常見的原子轉移自由基聚合 電子轉移再生活化之 原子轉移自由基聚合 可以在除氧條件不佳的情況下,依然可以控制分子量與擁有 窄的分子量分布,並經由小鼠實驗證明接枝雙離子高分子聚合物的蛋白質 相較於 未接枝雙離子高分子聚合物的蛋白質有 較長的 體內存留時間 。雙離子高分子聚合 物 與蛋白質接枝後的能力提供新的藥物設計途徑並 具有 修飾 市售蛋白質藥物 功能 與 醫學 應用上進一步發展的潛力。;PEGylated agents are broadly used in clinical therapy due to the increase in the half-life efficacy and decrease in the cytotoxicity. However, in the recent research, the existence of anti-PEG antibodies has been found, which deteriorates the efficacy of the therapeutic PEGylated drugs and enhances the risk of allergic reaction in some clinical reports. It has been found that the increasing exposure to PEG-related products will promote anti-PEG antibodies in the healthy human. In this research, we synthesized N-hydroxysuccinimide-terminated 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers and N-hydroxysuccinimide-terminated 2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide(SBMA) through atom transfer radical polymerization (ATRP). After synthesis, using Nuclear Magnetic Resonance spectrum to characterize the structure of polymer and calculate its molecular weights. Also, using Gel Permeation Chromatography to check molecular weights and polydispersity index. Then, Bovine serum albumin was used to conjugate with zwitterionic polymer. Finally, polymer-protein conjugates were introduced into mice to know their pharmacokinetics to investigate their circulation time. The experimental results showed that Activators regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP) compares to normal atom transfer radical polymerization (ATRP) has less critical deoxygenation for the polymerization to control the molecular weight of polymer and less polydispersity index, and experiment in mice proved that the protein-zwitterionic polymer conjugation had longer circulation time in body than the non-conjugation protein. The potential of zwitterionized therapeutic proteins was evaluated to justify their role in medical applications. More aggressively, the safety issue and biocompatibility of polymer-protein conjugates will be comprehensively identified and contemplated. A new avenue to molecular design for polymer-protein conjugates will be explored.