中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/92385
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42691528      Online Users : 1552
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/92385


    Title: 基於卷積神經網路之光場顯示眼動追蹤模型;CNN-Based Gaze Estimation for Light Field Display
    Authors: 朱冠宇;Zhu, Guan-Yu
    Contributors: 光電科學與工程學系
    Keywords: 眼動追蹤;卷積神經網路;光場
    Date: 2023-08-11
    Issue Date: 2024-09-19 15:49:07 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文旨在開發應用於頭戴式光場顯示的眼動追蹤模型。本模型以機器學習為基礎,以可見光的攝影機進行拍攝,利用捕捉到人眼的可見光影像作為輸入,經過神經網路得到對應的人眼凝視點作為輸出。
    本模型是由兩種網路架構串連而成的,分別為特徵定位模型以及映射模型,其中特徵定位模型利用卷積神經網路(convolution neural network,簡稱CNN)提取RGB影像的特徵圖,再使用特徵圖計算人眼在影像中的對應座標X_e、Y_e,目前並沒有對應的資料庫能夠符合光場顯示的應用場域,因此我們設計了一套拍攝架構用於產生眼睛影像的資料庫;映射模型為全連接網路(fully connected network,簡稱FCN)架構,在每次眼動追蹤前紀錄一組校正影像,接著使用校正影像訓練映射模型的參數,訓練完成的映射模型能將眼睛(影像)座標X_e、Y_e轉換成凝視點(螢幕)座標X_g、Y_g,達到眼動追蹤的目的。
    本研究的主要貢獻為(1)建立光場顯示的眼動追蹤資料庫、(2)開發應用於光場顯示的眼動追蹤模型、(3)利用RGB影像進行追蹤,不需要額外的光源。
    ;This study aims to develop an eye-tracking model for use in head-mounted light field displays. The model is based on machine learning and utilizes a visible light camera to capture images. It takes the captured visible light images of the human eye as input and employs a neural network to output the corresponding gaze point.
    The model consists of two interconnected network architectures: the feature localization model and the mapping model. The feature localization model utilizes a Convolutional Neural Network (CNN) to extract feature maps from RGB images. These feature maps are then used to compute the corresponding coordinates, X_e and Y_e, of the human eye in the image. Since there is currently no existing database that matches the application domain of light field displays, we designed a capture setup to generate a database of eye images.
    The mapping model employs a Fully Connected Network (FCN) architecture. Before each eye-tracking session, a set of calibration images is recorded. The parameters of the mapping model are then trained using these calibration images. The trained mapping model can convert the eye (image) coordinates X_e and Y_e to gaze point (screen) coordinates X_g and Y_g, thereby achieving eye-tracking.
    The main contributions of this research are as follows: (1) Establishing an eye-tracking database for light field displays, (2) Developing an eye-tracking model specifically designed for light field displays, and (3) Utilizing RGB images for tracking without the need for additional light sources.
    Appears in Collections:[Graduate Institute of Optics and Photonics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML12View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明